Элементы конструкций работающие на сжатие и растяжение

Главная

Расчеты на растяжение и сжатие
статически определимых стержневых систем

Пример 1.

Абсолютно
жесткий брус ВС (ЕВС = ) прикреплен в точке С к неподвижному шарниру (см.
рис.), а в точке В поддерживается
стальной тягой АВ. В точке В приложена вертикальная сила  F = 20 кН.

Подобрать
сечение тяги АВ и показать перемещение
точки В. Расчетное сопротивление
стали  растяжению  коэффициент условий работы  а модуль упругости
стали тяги АВ   

Решение.

Вырежем
мысленно узел В (рис. б) и составим для него уравнения
равновесия:

 откуда находим

откуда

Окончательно
имеем   

Следовательно,
брус ВС сжат силой N2, а элемент АВ растянут силой N1.

Подбор сечения
тяги АВ проводим по формуле откуда определяем

Предположим,
что тяга АВ имеет круглое поперечное
сечение, тогда An =
1,44 см2 = , откуда находим r =
0,677 смиd = 1,35 см.

Определим
удлинения стержней АВ и СВ:

Таким образом, точка В переместится в точку В/
по дуге окружности радиусом , причем расстояние между точками А и В/будет равно

Пример 2.

Определить из расчетов на прочность и жесткость
допускаемую силу  F,  если  [] = 120 МПа,  [] = 1,7 мм,  А1 = 2АА2 = А = 5 см2,  l1 = l2 = l = 1 м,  Е = 200 ГПа.

Р е ш е н и е.

1. Определение усилий в стержнях.

Из условия равновесия бруса АС имеем

,   ,        ;

,   ,        .

2. Расчет на прочность.

Находим напряжения в
стержнях 

,    

.

Как видим, наиболее
нагруженным является 2-й стержень, прочность которого предопределяет прочность
всей конструкции в целом. Из условия прочности  находим   = 30 кН.

3. Расчет на жесткость.

Вычисляем деформации
стержней

,    

,

а по ним перемещение точки С. Из подобия треугольников В1А1В2 и С1А1С2   имеем:

В1В2/А1В2 = С1С2/А1С2 или ,

откуда  .

Записываем условие жесткости  ,

откуда   = 200×109×5×10-4×1,7×10-3/(8,5×1)= 20 кН.

Допускаемая нагрузка из расчета на жесткость
получилась меньше, чем из расчета на прочность, поэтому ее и принимаем в  качестве окончательной, т.е.

кН.

Пример 3.

К двум
одинаковым стержням приложена сила F.
Установить, при каком угле  конструкция будет
иметь наименьший вес?

Р е ш е н и е.  

Вес
конструкции  является функцией  угла  ,  т.е. . 

Нам  необходимо установить такой угол, при котором
функция принимает минимальное значение. В теории оптимального
проектирования она называется целевой функцией.

Для
определения веса стержневой системы нужно знать площади сечений стержней. Из
условия равновесия узла С находим
усилия в стержнях:

,     ,    ,

а из условия
прочности – площади их поперечных сечений:

, откуда   .

Учитывая, что
длины стержней , находим вес конструкции (целевую функцию):  

.

Функция  принимает минимальное
значение, когда 

, откуда   и  .

Определение грузоподъемности
статически определимой конструкции, работающей на растяжение-сжатие. Расчет  по 
допускаемым  напряжениям

При таком
подходе несущая способность конструкции отождествляется с несущей способностью
наиболее нагруженного элемента. Последовательность расчета при этом выглядит
следующим образом.

Составляются уравнения статики и по числу лишних неизвестных –
дополнительные уравнения совместности деформаций. Решая полученную систему,
определяют усилия в стержнях и связанные с ними напряжения. Из сопоставления
напряжений в наиболее нагруженном элементе с допустимой величиной делается
заключение о надежности конструкции либо определяются искомые величины (размеры
сечения стержней, допускаемая нагрузка).

Пример 4.

Конструкция,
состоящая из стержней, соединенных шарнирами, загружена силой F (см. рис. 1). Сечения стержней – из
прокатной стали и площади сечений можно найти по таблицам сортамента прокатной
стали. Цель расчета:

1. определить
значение допускаемой нагрузки;

2. найти
перемещение узла С.

                   Рис.1

Решение.

Для
определения усилий используем метод сечений. Для этого нарисуем план сил
(рис.2): рассечем деформируемые стержни конструкции и отброшенные части
стержней заменим продольными силами  N1 и N2 .

                        Рис.2

Из уравнений
равновесия отсеченной части конструкции найдем продольные силы в стержнях:

   и   .

Знак минус показывает,
что направление усилия в стержне 2 противоположно показанному на плане сил,
т.е. стержень 2 сжат.

Определим
напряжения по  и выберем наиболее напряженный стержень (допустим, что в рассматриваемой задаче
это будет стержень 1).

Из условия прочности этого стержня получим значение
допускаемой нагрузки:

,      .

Найдем
перемещение узла С,
построив план перемещений (рис.3).

                                                        Рис.3

Предварительно
найдем абсолютные деформации стержней  и  по формуле . В
рассматриваемой задаче растянутый стержень 1 будет удлиняться, а сжатый
стержень 2 – укорачиваться. Для построения плана перемещений нарисуем схему
конструкции в масштабе и отложим отрезки  и  вдоль оси каждого
стержня, выбрав масштаб для деформаций так, чтобы картинка плана перемещений
была наглядной. В процессе деформации стержни поворачиваются относительно точек
А и В по дугам. Из-за малости деформаций эти дуги заменяем
касательными, т. е. перпендикулярами к направлениям стержней (отрезки  и  на плане перемещений).
На пересечении дуг (перпендикуляров к направлениям стержней) находится новое
положение узла C после деформации –
точка  на плане перемещений.
Вертикальное и горизонтальное перемещение узла C допускается определять по масштабу, не делая сложных
геометрических выкладок.

Читайте также:  Бетон м400 прочность на растяжение

Примечание. Если конструкция имеет
абсолютно жесткий  стержень, то принцип
построения плана перемещений тот же. Все точки абсолютно жесткого стержня могут
перемещаться только по дугам (перпендикулярам к направлению стержня), поворачиваясь
вокруг неподвижного шарнира. Например, если стержень АС на плане перемещений считать абсолютно жестким, то точка Спереместится в положение  и горизонтальное
перемещение узла С  будет равно нулю.

Пример 5.

Для схемы, изображенной на рис.1 необходимо:

                                          
Рис.1

1) Определить площадь поперечного сечения стержней при действии силы F и подобрать угловую равнополочную
или неравнополочную сталь, при условии, что поперечное
сечение одного из стержней в два раза больше, чем другого.

2) Определить напряжения в стержнях:

— от действия силы F;

— от неточности монтажа, если считать, что один из стержней выполнен
короче на величину ;

— от изменения температуры.

3) Определить суммарные напряжения от действия внешних сил, от неточности
монтажа и от изменения температуры.

4) Подсчитать недонапряжения или перенапряжения
в стержнях.

Дано: F=100 кН, а =
1,2м,
b = 0,8м,  = 0,2мм,  = 20°С, Е = 2×105МПа,
 = 125
×10-71/гр, [] = 100 МПа.

Решение.

Определим необходимую по условию прочности площадь поперечного сечения
стержней.

1) Находим степень статической неопределимости.

2.1) Статическая сторона задачи

;      ;

;      ;

;    .

2.2) Геометрическая сторона задачи (рис.2)

; ; ;

2.3) Физическая сторона задачи

;

                                          
Рис.2

2.4) Синтез

Подставим выражения, полученные в физической стороне задачи, в выражения
из геометрической стороны задачи и приведем подобные.

Решим совместно систему уравнений, составленную из полученного выражения
для N1 и уравнения моментов из статической стороны
задачи.

2.5) Определяем площадь поперечного сечения стержней

Определим, какой из стержней нагружен сильнее.

;

Второй стержень является более нагруженным, так как , поэтому запишем для него условие прочности и
определим площадь поперечного сечения.

Подбираем по справочнику угловую равнополочную сталь № 70´5
ГОСТ8509-86 (= 6,86 см2).

2.6) Определяем напряжения в стержнях от внешних сил

Первый стержень работает на сжатие, а второй – на растяжение.

3) Определим напряжения в стержнях от неточности монтажа

Будем считать, что короткий стержень выполнен короче на величину   (см.рис.3).

                                               Рис.3

3.1) Статическая сторона задачи

;   ;

;   ;

;   .

3.2) Геометрическая сторона задачи

; ; ;

3.3) Физическая сторона задачи

;

3.4) Синтез

Подставим в полученное выражение данные из условия задачи и получим:

3.5) Определим напряжения в стержнях

Оба стержня работают на растяжение.

4) Определим напряжения в стержнях от изменения температуры (см. рис. 4).

                                            
Рис.4

Будем считать, что температура системы повышается. Тогда оба стержня будут
удлиняться от повышения температуры. При удлинении стержней, они будут
воздействовать друг на друга через недеформируемый стержень АС. Вследствие этого, в обоих стержнях
будут возникать дополнительные силы сжатия.

4.1) Статическая сторона задачи

;       ;

;     ;

;      .

4.2) Геометрическая сторона задачи

; ; ;

4.3) Физическая сторона задачи

.

4.4) Синтез

Решив уравнение, получим .

4.5) Определим напряжения в стержнях

Оба стержня работают на сжатие.

5) Определим суммарные напряжения в стержнях

6) Найдем недонапряжения или перенапряжения в
стержнях

 — недонапряжение

 — недонапряжение.

Пример 6.

Дано: Сила F= 100 кН;
расчетное сопротивление стали  R =160 МПа; модуль упругости E=2∙105
МПа(рис. а)

Требуется:

1. Определить
усилия в стержнях.

2. Подобрать
размеры поперечных сечений стержней. Стержень 1 стальной, круглого поперечного
сечения, стержень 2 стальной квадратного сечения.

3. Вычислить
удлинения (укорочения) стержней и построить план перемещений.

4. Определить
перемещение узла.

а)Элементы конструкций работающие на сжатие и растяжение         б)Элементы конструкций работающие на сжатие и растяжение

в)Элементы конструкций работающие на сжатие и растяжение     г)Элементы конструкций работающие на сжатие и растяжение

Решение.

Мысленно
вырезаем узел В,
действие отброшенной части кронштейна заменяем искомыми внутренними усилиями.
Для полученной плоской системы сходящихся сил составим уравнения равновесия
(рис. б)

Читайте также:  При растяжении болят мышцы шеи

Решив
уравнения, найдем внутренние усилия NBD  и NBC

Полученные
положительные значения внутренних усилий показывают, что предварительно
выбранные направления усилий оказались верными, стержень BC
растягивается, а стержень BD сжимается.

Диаметр
стержня BC находим из условия прочности:

где,

откуда .

Размеры поперечного сечения стержня BD определим на условия
прочности:

где  ABD = a2,

откуда  .

Перемещение
узла В
найдем с помощью графоаналитического метода, для чего вычислим, используя закон
Гука, абсолютные деформации стержней ВС
и BD, предполагая их свободными в точке В:

где

Положение узла В после деформации стержней
определится  в результате построения
деформационного треугольника по сторонам  и .

Стержень ВС удлинился на величину  , концевое сечение
переместилось в точку В1. Радиусом, равным СВ1проведем из точки С
дугу окружности. Так как перемещения малы, то дугу можно заменить касательной,
проведенной через В1
перпендикулярно оси стерня ВС
(рисунок 1, в).

Стержень BD укоротился на , и концевое сечение переместилось в точку В2.
Заменяя дугу, описанную из точки D радиусом DB2касательной,
проведенной через В2перпендикулярно оси стержня BD, получим на
пересечении перпендикуляров точку В3
— новое положение узла В. Соединив
точку В с В3 найдем перемещение  узла В. На рисунке 1, в план перемещений изображен в увеличенном масштабе. План
перемещений рекомендуется строить отдельно, как показано на рисунке 1, г. Из него следует, что горизонтальная
составляющая перемещения  узла
В равна:

 см.

Вертикальную
составляющую перемещения  узла
В легко найти,
воспользовавшись теоремой аналитической геометрии – проекция замыкающей на
любую ось равна алгебраической сумме проекций составляющих на ту же ось. Принимая за ось проекций направление  получим:

;

откуда .

Знак  учтен при построении
плана перемещений. Полное перемещение узла Вбудет равно:

.

Онлайн-калькулятор «Расчет прочности при растяжении-сжатии»

email: KarimovI@rambler.ru

Адрес: Россия, 450071, г.Уфа, почтовый ящик 21

Теоретическая механика   Строительная механика

Прикладная механика  Детали машин
 Теория машин и механизмов

Источник

Центрально-растянутые элементы. Работа таких элементов под нагрузкой полностью соответствует диаграмме работы матери­ала при растяжении.

Основная проверка для центрально-растянутых элементов — проверка прочности, относящаяся к первой группе предельных состояний.

Напряжения в центрально-растянутом элементе

σ=N / Aп ≤ Ryγc

где N— усилие в элементе от расчетных нагрузок; Aп — площадь поперечного сечения проверяемого элемента за вычетом ослабле­ний (площадь сечения нетто); Ry — расчетное сопротивление; γc — коэффициент условий работы.

Расчет по формуле выше предупреждает развитие пластических деформаций в ослабленном сечении элементов, выполненных из малоуглеродистых сталей и сталей повышенной прочности.

Расчет на прочность растянутых элементов конструкций из стали с отношением Ruγu > Ry эксплуатация которых возможна и после достижения металлом предела текучести, выполняют по формуле σ=N / Aп ≤ Ruγu / γuγn

где γu — коэффициент надежности при расчете по временному со­противлению.

Кроме прочности растянутых элементов, необходимо обеспечить их достаточную жесткость, чтобы избежать повреждения элементов при перевозке и монтаже конструкций, а также в процессе их эксплу­атации уменьшить провисание элементов от собственного веса и пре­дотвратить вибрацию стержней при динамических нагрузках.

Для этой цели проверяют гибкость растянутых элементов, ко­торая не должна превышать максимально допустимых значений [λ], приведенных в таблице ниже 

λ = lef/i ≤ λ 

где lef — расчетная длина элемента; i — радиус инерции сечения.

Предельные гибкости [λ] растянутых элементов

Элементы конструкций

Максимальная допускаемая гибкость

в зданиях и сооружениях при нагрузках

в затво­рах ГТС

статиче­

ских

динамиче­ских, прило­женных непо­средственно к конструкции

1

2

3

4

Пояса и опорные раскосы плоских

ферм

400

250

250

Прочие элементы ферм

400

350

350

Нижние пояса подкрановых балок

и ферм

150

Элементы продольных и попе­речных связей в затворах ГТС

150

Элементы вертикальных связей между колоннами (ниже подкра­новых балок)

300

300

Прочие элементы связей

400

400

400

Примечания. I. В сооружениях, не подвергающихся динамическим воздействиям. гибкость растянутых элементов проверяют только в вертикальной плоскости. 2. К динамическим нагрузкам, приложенным непосредственно к конструкциям, относятся нагрузки, принимаемые в расчетах на выносливость или в расчетах с учетом коэффициентов динамичности. 3. Для растянутых элементов, в которых при неблагоприятном расположении нагрузки может изменяться знак усилия, предельную гибкость принимают как для сжатых элементов; при этом соединительные прокладки в составных элементах следует устанавливать не реже чем через 40i

Читайте также:  Растяжение голеностопного сустава упражнения

Центрально-сжатые элементы. Эти элементы рассчитывают по первой группе предельных состояний, при этом для коротких элементов, длина которых превышает наименьший поперечный раз­мер не более чем в 5-6 раз, проверяют прочность по формуле выше, а для длинных гибких элементов — устойчивость по формуле

σ = N/φA = Ryγc/γn

где А — площадь поперечного сечения брутто; φ — коэффициент про­дольного изгиба, определяемый по таблице ниже по наибольшей гибкости λ или по формулам в зависимости от условной гибкости элемента; при 0 < λ ≤ 2,5:

Коэффициенты φ продольного изгиба центрально-сжатых стальных элементов

Гибкость элемента

Значения φ при Ry, МПа

200

240

280

320

360

400

10

0,988

0,987

0,985

0,984

0,983

0,982

20

0,967

0,962

0,959

0,955

0,952

0,949

30

0,939

0,931

0,924

0,917

0,911

0,905

40

0.906

0,894

0,883

0,873

0,863

0,854

50

0,869

0,852

0,836

0,822

0,809

0,796

60

0,827

0,805

0,785

0,766

0,749

0,721

70

0,782

0,754

0,724

0,687

0,654

0,623

80

0,734

0,686

0,641

0,602

0,566

0,532

90

0,665

0,612

0,565

0,522

0,483

0,447

100

0,599

0,542

0,493

0,448

0,408

0,369

110

0,537

0,478

0,427

0,381

0,338

0,306

120

0,479

0,419

0,366

0,321

0,287

0,260

130

0,425

0,364

0,313

0,276

0,247

0,223

140

0,376

0,315

0,272

0,240

0,215

0,195

150

0,328

0,276

0,239

0,211

0,189

0,171

160

0,290

0,244

0,212

0,187

0,167

0,152

170

0,259

0,218

0,189

0,167

0,150

0,136

180

0,233

0,196

0,170

0,150

0,135

0,123

190

0,210

0,177

0,154

0,136

0,122

0,111

200

0,191

0,161

0,140

0,124

0,111

0,101

210

0,174

0,147

0,128

0,113

0,102

0,093

220

0,160

0,135

0,118

0,104

0,094

0,086

Коэффициенты μ для определения расчетных длин колонн и стоек постоянного сечения

 Расчетная схема элемента

 μ

Расчетная схема элемента 

 μ

 1 - 0051

1

2

0,7 

1 - 0051 - копия 

0,5

1,12

0,725

Учитывая традиционное соотношение размеров элементов в металлических конструкциях, основной является проверка устойчивости.

По формуле, выведенной Эйлером, потеря устойчивости цент­рально-сжатым элементом, шарнирно закрепленным по концам (основной случай), происходит при критической силе

Ncr = π2EImin / l2ef

где Е — модуль упругости; Imin — минимальный момент инерции поперечного сечения элемента; lef — расчетная длина стержня.

Соответственно критические напряжения

1 - 0052

где imin= √Imin/A — минимальный радиус инерции.

Формула Эйлера выведена в предположении, что Е — величина постоянная, т. е. критические напряжения не превосходят предел пропорциональности материала. Для малоуглеродистых сталей, име­ющих предел пропорциональности σel = 200 МПа, из формулы ниже можно получить наименьшую гибкость, при которой применима формула Эйлера:

Гибкость стержней не должна превышать предельных значений для сжатых элементов (таблица ниже).

Значения предельной допустимой гибкости [λ] для сжатых стержней

позиции

Элементы конструкций

λ

1

2

3

1

Пояса, опорные раскосы и стойки, передающие опорные реакции:

а) плоских ферм и пространственных конструк­ций из труб или парных уголков высотой до 50 м;

б) пространственных конструкций из одиноч­ных уголков труб или парных уголков высотой более 50 м

180-60α

120

2

а) плоских ферм, сварных пространственных конструкций из одиночных уголков, простран­ственных конструкций из труб или парных уголков;

б) пространственных конструкций из одиночных уголков с болтовыми соединениями

210-60α

220-40α

3

Верхние пояса ферм, остающиеся незакреплен­ными в процессе монтажа

220

4

Основные колонны

180-60α

5

Второстепенные колонны (стойки фахверка, фонарей и т. п.), элементы решетки колонн, эле­менты вертикальных связей между колоннами (ниже подкрановых балок)

210-60α

6

Элементы связей (за исключением связей, ука­занных в п. 5), а также стержни, служащие для уменьшения расчетной длины сжатых стерж­ней, и другие ненагруженные элементы

200

7

Сжатые и ненагруженные элементы простран­ственных конструкций таврового и крестового сечения, подверженные воздействию ветровых нагрузок, при проверке гибкости в вертикаль­ной плоскости; элементы связей в затворах ГТС

150

Примечание. α = N / φARyγc ≥ 0,5; в необходимых случаях вместо φ следует применять φе.

Проверка устойчивости центрально-сжатого элемента сводит­ся к сравнению напряжений, равномерно распределенных по сече­нию, с критическим вычисленным с учетом случайных эксцентри­ситетов: σ=N/A ≤ σсr. Чтобы не вычислять каждый раз σсr для про­верки устойчивости можно пользоваться формулой выше. Смысл коэффициента продольного изгиба φ состоит в том, что он умень­шает расчетное сопротивление до значений, обеспечивающих ус­тойчивое равновесие стержня, т. е. до критического напряжения:

σсr = φ Ry или φ = σсrRy

С учетом влияния случайных эксцентриситетов

1 - 0053

где σсr — критическое напряжение стержня, вычисленное по форму­ле Эйлера; σeсr — критическое напряжение стержня, сжимаемого силой, приложенной с возможным случайным эксцентриситетом е.

Источник