Изгиб с центральным растяжением

Изгиб с растяжением
Изгиб с растяжением 2
Изгиб с растяжением 3
Изгиб с растяжением 4
Изгиб с растяжением 5
Изгиб с растяжением 6
Изгиб с растяжением 7
Изгиб с растяжением 8
Изгиб с растяжением 9

Изгиб с растяжением – частный случай сложного сопротивления, при котором на брус действуют продольные и поперечные нагрузки, пересекающие ось бруса. В общем случае в поперечных сечениях возникают пять внутренних усилий: действующие в двух плоскостях изгибающие моменты Mz, My, поперечные силы Qz, Qy, а также продольная сила N. Возникает сложный изгиб с растяжением или сжатием. Пренебрегая касательными напряжениями от поперечных сил Qz, Qy (для длинных балок с отношением ℓ/h > 10 их влияние незначительно), можно считать напряженное состояние в опасных точках линейным. Внецентренное растяжение или сжатие Внецентренное растяжение – частный случай изгиба с растяжением, при котором брус растягивается силами, параллельными оси бруса так, что их равнодействующая не совпадает с осью бруса, а проходит через точку Р, называемую полюсом силы. Внутренние усилия и напряжения В произвольном сечении х бруса (рис.8.7, а) методом сечений определяем внутренние усилия Рис. 8.6. Примеры деталей и узлов, работающих при внецентренном нагружении: а – болт-костыль; б – пружина сцепления; в – сварное соединение Отличны от нуля три внутренних усилия (рис. 8.7, б), от которых возникают нормальные напряжения, действующие по одной из трех пар граней (рис. 8.7, в); две другие пары граней свободны от напряжений. Имеет место линейное напряженное состояние. Напряжения в произвольной точке являются суммой трех слагаемых Учитывая, что отношение i = – радиус инерции сечения, получим О правиле знаков внутренних усилий. Формула (8.10) выведена для случая положительной растягивающей силы N и изгибающих моментов Mz, My, вызывающих растягивающие напряжения в точке, принадлежащей первой четверти осей координат (где x > 0 и y > 0). Поэтому оси координат поперечного сечения бруса следует направлять так, чтобы полюс P (точка приложения силы) находился в первом квадранте. Если сила, приложенная к брусу, сжимающая, то ее числовое значение будет со знаком минус. Анализ формулы (8.10) 1. Отсутствие координаты х свидетельствует о неизменности напряжений вдоль оси бруса. 2. В случае приложения силы в центр тяжести сечения (zP = 0, yP = 0) напряжения в любой точке сечения постоянны и равны σ = F/A, то есть центральное растяжение является частным случаем внецентренного. Рис. 8.7. Схема к определению внутренних усилий и напряжений при внецентренном приложении силы 3. Независимо от значений координат полюса Р напряжение в центре тяжести сечения (yцт =0, zцт = 0), σцт = F/A. 4. Переменные z и y в первой степени, следовательно, формула (8.10) является уравнением прямой и нормальные напряжения распределяются по линейному закону, значит должна быть нейтральная линия, на которой напряжения равны нулю. Уравнение нейтральной линии при внецентренном растяжении Нейтральная линия (нейтральная ось) – геометрическое место точек, в которых нормальное напряжение в поперечном сечении равно нулю. Приравняем нулю уравнение (8.10). Поскольку F/A ≠ 0, то выражение в скобках равно нулю Переменные z, y в первой степени, следовательно, нормальные напряжения в сечении распределяются по линейной зависимости. Полученное выражение приведем к виду уравнения прямой в отрезках, где a и b – отрезки, отсекаемые линией на осях координат. В нашем случае уравнение нейтральной линии будет записано как Свободный член полученного уравнения не равен нулю, следовательно, нейтральная линия через начало координат не проходит. Отрезки, отсекаемые нейтральной линией на осях y и z, соответственно равны: По найденным значениям отрезков проводят нейтральную линию и находят точки В и С, наиболее удаленные от нее (рис. 8.9). Выполняют это простым геометрическим построением, проводя касательные к сечению, параллельные нейтральной оси. Найденные точки – опасные, поскольку напряжения в них наибольшие по величине. Рис. 8.8. Уравнение прямой в отрезках и график прямой линии, известные из школьного курса Уравнения (8.12), связывающие координаты полюса Р – точки приложения внешней нагрузки с положением нейтральной линии, являются гиперболической функцией. Чем ближе полюс Р к центру тяжести сечения (значения yP, zP уменьшаются), тем нейтральная линия проходит дальше и в пределе стремится к бесконечности. И, наоборот, по мере отдаления точки приложения силы от центра тяжести нейтральная линия асимптотически приближается к нему. Однако пересечь центр тяжести сечения нейтральная линия не может (см. анализ формулы (8.10)). В центре тяжести σцт = F/A (рис. 8.9), поскольку yцт = 0 и zцт = 0 (подставьте в (8.10)). Нейтральная линия может разделять поперечное сечение на области, в которых действуют напряжения разных знаков. Некоторые материалы (чугун, силумин, керамика, кирпичная кладка…) хорошо сопротивляются сжатию и плохо – растяжению. Поэтому необходимо уметь определять такую область приложения нагрузки, в которой не возникают напряжения разных знаков. Ядро сечения Ядро сечения – область вокруг центра тяжести сечения, при приложении нагрузки внутри которой, напряжения во всем сечении будут одного знака. Контур ядра сечения строят путем окатывания нейтральной линией контура поперечного сечения, то есть решают задачу обратную той, в которой определяли положение нейтральной линии: куда следует прикладывать силу, чтобы нейтральная линия не пересекала контур сечения, а только касалась его. Задают несколько положений нейтральной линии, касательной к сечению (например, н.л.1, н.л.2, н.л.3), определяют координаты точек пересечения этих линий с осями координат (например, zн.л.1, yн.л.1). Затем, преобразуя уравнение (11), находят Рис. 8.10. Определение координат отрезков нейтральной линии для построения ядра сечения Рис. 8.9. Эпюра напряжений в поперечном сечении Нейтральная линия соответствующие им координаты точек ядра сечения (точки 1, 2, 3): Так как при переходе нейтральной линии с одной стороны на другую (например, от н.л 3 к н.л 4) она поворачивается вокруг угловой точки сечения, то точка приложения силы перемещается по прямой (на рис. 8.10 отрезок 3 – 4), образуя контур ядра. Пример 8.4. Построить ядро сечения для круга диаметром d. Решение. Квадрат радиуса инерции круга: Задаем положение нейтральной линии 1–1, касательной к окружности. Ее координаты: Координаты точки ядра сечения: Из симметрии сечения относительно его центра тяжести следует, что при других положениях нейтральной линии на окружности диаметром d точки ядра сечения образуют концентрический с ней круг диаметром d/4. Пример 8.5. Построить ядро сечения для прямоугольника с размером сторон bЧh. Решение. Квадраты радиусов инерции: Задаем положение нейтральной линии 1-1, касательной к верхней грани прямоугольника. Ее ко- ординаты: zн.л 1 = ∞; yн.л1 = h/2. Координаты соответствующей точки ядра сечения: Аналогично для нейтральной линии 2-2: zн.л 2 = b/2; yн.л 2 = ∞. Учитывая симметрию прямоугольного сечения относительно осей z и y, задаем положения нейтральных линий на противоположных сторонах прямоугольника и получаем еще две точки. Соединяя все точки, получаем ядро сечения в виде ромба с диагоналями, равными h/3 и b/3. Пример 8.6. Построить ядро сечения для швеллера № 20. Решение. Из таблицы сортамента выпишем исходные данные и выполним рисунок швеллера. Последовательно задаем положение нейтральной линии (I-I, II-II, III-III, IV-IV), касающейся контура сечения, и вычисляем координаты точек ядра сечения. Расчеты представлены в табличном виде. Ядро сечения имеет вид четырехугольника, асимметричного относительно оси ординат. Положение ядра сечения зависит лишь от формы и размеров поперечного сечения, но не зависит от величины приложенной силы. Расчет на прочность при внецентренном нагружении Поверочный расчет выполняют, используя условие прочности Проектный расчет обладает особенностью, связанной с тем, что геометрические характеристики, входящие в условие прочности содержат искомый размер поперечного сечения в разной степени. Площадь А измеряется в м2, а моменты сопротивления W в м3. Попытка выразить искомый yн.л. = h/2 = 20/2 = 10 см; zн.л. = ∞; размер из условия прочности приводит к трансцендентной функции, то есть аналитической функции, не являющейся алгебраической. Проектный расчет выполняют методом итераций 1 [от лат. iteratio – повторение]. В первом приближении, пренебрегая одним из внутренних усилий, – продольной силой N – подбирают размер сечения только из условия прочности при изгибе. Полученный размер подставляют в исходное уравнение и выполняют следующую пробу. Процесс повторяют до тех пор, пока невязка – разность размеров последующей и предыдущей проб, не достигнет заданной наперед малости. Пример 8.7. (Винокуров А. И. Сборник задач … 5.35). Подобрать диаметр стержня выпускного клапана. При расчете использовать усилие F в момент открывания клапана в конце рабочего хода поршня. Решение. Сила давления газов на тарелку клапана 533441Н Внутренние усилия в сечении 1-1 стержня клапана (по модулю): N = F; M = F•e. Условие прочности: По обе стороны от знака неравенства искомый диаметр – имеем трансцендентное уравнение, которое решаем методом приближений: Метод последовательных приближений, при котором каждое новое приближение вычисляют исходя из предыдущего; начальное приближение выбирается в достаточной степени произвольно. Дано: p = 1,5 МПа; e = 12 мм; D = 35 мм; [σ] = 210 МПа Разность между последним и предпоследним приближениями Процесс подбора прекращаем, принимаем d = 10 мм. Проверка: Напряжения изгиба больше напряжений растяжения в 6,9 раза Пример 8.8. (Винокуров А. И. Сборник задач … 5.38.). Из расчета на прочность определить размер h скобы струбцины. Решение. Условие прочности при внецентренном растяжении плоской фигуры σ=+≤[σ] где A = b•h; W = b•h2/6; M = F(a+h/2). Условие прочности: Требуемый размер скобы: Размер h в обеих части неравенства. Полученное уравнение – трансцендентное. Решаем его методом последовательных приближений. В первом приближении принимаем h в скобках под корнем равным нулю: h0 = 0. Тогда Невязка подбора 100 25,4 % Следующее приближение 101,58 мм. Невязка подбора 100 4,5 % Следующее приближение 102,54 мм. Невязка подбора 100 0,95 % невязка менее 1 %, поэтому выходим из цикла подбора. Принимаем h = 103 мм. Проверка: Сопоставим вклады от изгиба и растяжения в общее напряжение: Напряжения от изгиба в 8,24 раза превышают напряжения от растяжения. Полученное соотношение можно сделать более благоприятным снизив долю растягивающих напряжений от изгиба за счет уменьшения плеча е изгибающего момента. На практике применяют тавровое и двутавровое сечения, смещая центр тяжести с ближе к линии действия силы и располагая больше материала в области растягивающих напряжений, к которым хрупкие материалы более чувствительны. Рис. 8.11. Примеры выполнения поперечного сечения бруса, подверженного действию внецентренного растяжения

Источник

Изгиб балки при действии продольных и поперечных сил.

   На практике очень часто встречаются случаи совместной работы стержня на изгиб и на растяжение или сжатие. Подобного рода деформация может вызываться или совместным действием на балку продольных и поперечных сил, или только одними продольными силами.

   Первый случай изображен на Рис.1. На балку АВ действуют равномерно распределенная нагрузка q и продольные сжимающие силы Р.

Рис.1. Совместное действие изгиба и сжатия.

   Предположим, что прогибами балки по сравнению с размерами поперечного сечения можно пренебречь; тогда с достаточной для практики степенью точности можно считать, что и после деформации силы Р будут вызывать лишь осевое сжатие балки.

   Применяя способ сложения действия сил, мы можем найти нормальное напряжение в любой точке каждого поперечного сечения балки как алгебраическую сумму напряжений, вызванных силами Р и нагрузкой q.

   Сжимающие напряжения от сил Р равномерно распределены по площади F поперечного сечения и одинаковы для всех сечений:

нормальные напряжения от изгиба в вертикальной плоскости в сечении с абсциссой х, которая отсчитана, скажем, от левого конца балки, выражаются формулой

Таким образом, полное напряжение в точке с координатой z (считая от нейтральной оси) для этого сечения равно

   На Рис.2 изображены эпюры распределения напряжений в рассматриваемом сечении от сил Р, нагрузки q и суммарная эпюра.

   Наибольшее напряжение в этом сечении будет в верхних волокнах, где оба вида деформации вызывают сжатие; в нижних волокнах может быть или сжатие или растяжение в зависимости от числовых величин напряжений и . Для составления условия прочности найдем наибольшее нормальное напряжение.

Рис.2. Сложение напряжений сжатия и изгиба

   Так как напряжения от сил Р во всех сечениях одинаковы и равномерно распределены, то опасными будут волокна, наиболее напряженные от изгиба. Такими являются крайние волокна в сечении с наибольшим изгибающим моментом; для них

Таким образом, напряжения в крайних волокнах 1 и 2 среднего сечения балки выражаются формулой

,

и расчетное напряжение будет равно

Если бы силы Р были растягивающими, то знак первого слагаемого изменился бы, опасными были бы нижние волокна балки.

Обозначая буквой N сжимающую или растягивающую силу, можем написать общую формулу для проверки прочности:

(27.1)

Описанный ход расчета применяется и при действии на балку наклонных сил. Такую силу можно разложить на нормальную к оси, изгибающую балку, и продольную, сжимающую или растягивающую.

Внецентренное сжатие или растяжение.

   Вторым практически важным случаем сложения деформаций от изгиба и от продольных сил является так называемое внецентренное сжатие или растяжение, вызываемое одними продольными силами. Этот вид деформации получается при действии на стержень двух равных и прямопротивоположных сил Р, направленных по прямой АА, параллельной оси стержня (Рис.3 а). Расстояние точки А от центра тяжести сечения ОА=е называется эксцентриситетом.

Рассмотрим сначала случай внецентренного сжатия, как имеющий большее практическое значение.

   Нашей задачей явится нахождение наибольших напряжений, материале стержня и проверка прочности. Для решения этой задачи приложим в точках О по две равные и противоположные силы Р (Рис.3 б). Это не нарушит равновесия стержня в целом и не изменит напряжений в его сечениях.

   Силы Р, зачеркнутые один раз, вызовут осевое сжатие, а пары сил Р, зачеркнутые дважды, вызовут чистый изгиб моментами . Расчетная схема стержня показана на Рис.3 в. Так как плоскость действия изгибающих пар ОА может не совпадать ни с одной из главных плоскостей инерции стержня, то в общем случае имеет место комбинация продольного сжатия и чистого косого изгиба.

   Так как при осевом сжатии и чистом изгибе напряжения во всех сечениях одинаковы, то проверку прочности можно произвести для любого сечения, хотя бы С—С (Рис.3 б, в).

   Отбросим верхнюю часть стержня и оставим нижнюю (Рис.3 г). Пусть оси Оу и Oz будут главными осями инерции сечения.

Рис.3. а) расчетная схема б) преобразование нагрузок в)приведенная расчетная схема г) механизм исследования напряжений

   Координаты точки А, — точки пересечения линии действия сил Р с плоскостью сечения, — пусть будут и . Условимся выбирать положительные направления осей Оу и Oz таким образом, чтобы точка А оказалась в первом квадранте. Тогда и будут положительны.

   Для того чтобы отыскать наиболее опасную точку в выбранном сечении, найдем нормальное напряжение в любой точке В с координатами z и у. Напряжения в сечении С — С будут складываться из напряжений осевого сжатия силой Р и напряжений от чистого косого изгиба парами с моментом Ре, где . Сжимающие напряжения от осевых сил Р в любой точке равны , где — площадь поперечного сечения стержня; что касается косого изгиба, то заменим его действием изгибающих моментов в главных плоскостях. Изгиб в плоскости х Оу вокруг нейтральной оси Oz будет вызываться моментом и даст в точке В нормальное сжимающее напряжение

Точно так же нормальное напряжение в точке В от изгиба в главной плоскости х Oz, вызванное моментом , будет сжимающим и выразится формулой.

Суммируя напряжения от осевого сжатия и двух плоских изгибов и считая сжимающие напряжения отрицательными, получаем такую формулу для напряжения в точке В:

(1)

   Эта формула годится для вычисления напряжений в любой точке любого сечения стержня, стоит только вместо у и z подставить координаты точки относительно главных осей с их знаками.

   В случае внецентренного растяжения знаки всех составляющих нормального напряжения в точке В изменятся на обратные. Поэтому для того, чтобы получать правильный знак напряжений как при внецентренном сжатии, так и при внецентренном растяжении, нужно, кроме знаков координат у и z, учитывать также и знак силы Р; при растяжении перед выражением

должен стоять знак плюс, при сжатии — минус.

Полученной формуле можно придать несколько иной вид; вынесем за скобку множитель ; получим:

(2)

Здесь и — радиусы инерции сечения относительно главных осей (вспомним, что и ).

   Для отыскания точек с наибольшими напряжениями следует так выбирать у и z, чтобы достигло наибольшей величины. Переменными в формулах (1) и (2) являются два последних слагаемых, отражающих влияние изгиба. А так как при изгибе наибольшие напряжения получаются в точках, наиболее удаленных от нейтральной оси, то здесь, как и при косом изгибе, надо отыскать положение нейтральной оси.

   Обозначим координаты точек этой линии через и ; так как в точках нейтральной оси нормальные напряжения равны нулю, то после подстановки в формулу (2) значений и получаем:

или

(3)

Это и будет уравнение нейтральной оси. Очевидно, мы получили уравнение прямой, не проходящей через центр тяжести сечения.

Чтобы построить эту прямую, проще всего вычислить отрезки, отсекаемые ею на осях координат. Обозначим эти отрезки и . Чтобы найти отрезок , отсекаемый на оси Оу, надо в уравнении (3) положить

;

тогда мы получаем:

и

(4)

подобным же образом, полагая

;

получаем:

(5)

   Если величины и положительны, то отрезки и будут отрицательны, т. е. нейтральная ось будет расположена по другую сторону центра тяжести сечения, чем точка А (Рис.3 г).

   Нейтральная ось делит сечение на две части — сжатую и растянутую; на Рис.3 г растянутая часть сечения заштрихована. Проводя к контуру сечения касательные, параллельные нейтральной оси, получаем две точки и , в которых будут наибольшие сжимающие и растягивающие напряжения.

   Измеряя координаты у и z этих точек и подставляя их значения в формулу (1), вычисляем величины наибольших напряжений в точках и :

Если материал стержня одинаково сопротивляется растяжению и сжатию, то условие прочности получает такой вид:

   Для поперечных сечений с выступающими углами, у которых обе главные оси инерции являются осями симметрии (прямоугольник, двутавр и др.) и Поэтому формула упрощается, и мы имеем

   Если же материал стержня неодинаково сопротивляется растяжению и сжатию, то необходимо проверить прочность стержня как в растянутой, так и в сжатой зонах.

   Однако может случиться, что и для таких материалов будет достаточно одной проверки прочности. Из формул (4) и (5) видно, что положение точки А приложения силы и положение нейтральной оси связаны: чем ближе подходит точка А к центру сечения, тем меньше величины и и тем больше отрезки и . Таким образом, с приближением точки А к центру тяжести сечения нейтральная ось удаляется от него, и наоборот. Поэтому при некоторых положениях точки А нейтральная ось будет проходить вне сечения и все сечение будет работать на напряжения одного знака. Очевидно в этом случае всегда достаточно проверить прочность материала в точке .

   Разберем практически.важный случай, когда к стержню прямоугольного сечения (Рис. 4) приложена внецентренно сила Р в точке А, лежащей на главной оси сечения Оу. Эксцентриситет ОА равен е, размеры сечения b и d. Применяя полученные выше формулы, имеем:

Рис.4. Расчетная схема бруса прямоугольного сечения.

Напряжение в любой точке В равно

так как

Напряжения во всех точках линии, параллельной оси Oz, одинаковы. Положение нейтральной оси определяется отрезками

Нейтральная ось параллельна оси Oz; точки с наибольшими растягивающими и сжимающими напряжениями расположены на сторонах 1—1 и 3—3.

Значения и получатся, если подставить вместо у его значения . Тогда

Дальше…

Источник