Из чего делают пружины растяжения

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 31 мая 2016;
проверки требуют 13 правок.
Витая цилиндрическая пружина растяжения
Пружина — упругий элемент машин и различных механизмов, накапливающий и отдающий, или поглощающий механическую энергию.
История[править | править код]
Исторически первыми упругими элементами применяемыми человеком считаются различные бытовые пинцеты и прищепки-зажимы, луки и удочки.
Теория[править | править код]
С точки зрения классической физики, пружину можно рассматривать как устройство, накапливающее потенциальную энергию путём изменения расстояния между атомами эластичного материала.
В теории упругости законом Гука установлено, что растяжение эластичного стержня пропорционально приложенной к нему силе, направленной вдоль его оси. В реальности этот закон выполняется не точно, а только при малых растяжениях и сжатиях. Если напряжение превышает определённый предел (предел текучести) в материале наступают необратимые нарушения его структуры, и деталь разрушается или получает необратимую деформацию. Следует отметить, что многие реальные материалы не имеют чётко обозначенного предела текучести, и закон Гука к ним неприменим. В таком случае, для материала устанавливается условный предел текучести.
Витые металлические пружины преобразуют деформацию сжатия/растяжения пружины в деформацию кручения материала из которого она изготовлена, и наоборот, деформацию кручения пружины в деформацию растяжения и изгиба металла, многократно усиливая коэффициент упругости за счёт увеличения длины проволоки противостоящей внешнему воздействию. Волновые пружины сжатия подобны множеству последовательно/параллельно соединённых рессор, работающих на изгиб.
Коэффициент жёсткости[править | править код]
Витая цилиндрическая пружина сжатия или растяжения, намотанная из цилиндрической проволоки и упруго деформируемая вдоль оси, имеет коэффициент жёсткости
где
dD — диаметр проволоки;
dF — диаметр намотки (измеряемый от оси проволоки);
n — число витков;
G — модуль сдвига (для обычной стали G ≈ 80 ГПа, для меди ~ 45 ГПа).
Виды пружин[править | править код]
Витая цилиндрическая пружина сжатия
Тарельчатые пружины
Место установки тарельчатых пружин
По виду воспринимаемой нагрузки:
- пружины сжатия;
- пружины растяжения;
- пружины кручения;
- пружины изгиба.
Пружины растяжения — рассчитаны на увеличение длины под нагрузкой. В ненагруженном состоянии обычно имеют сомкнувшиеся витки. На концах для закрепления пружины на конструкции имеются крючки или кольца.
Пружины сжатия — рассчитаны на уменьшение длины под нагрузкой. Витки таких пружин без нагрузки не касаются друг друга. Концевые витки поджимают к соседним и торцы пружины шлифуют. Длинные пружины сжатия, во избежание потери устойчивости, ставят на оправки или стаканы, либо используют менее габаритные волновые пружины.
У пружин растяжения-сжатия под действием постоянной по величине силы витки испытывают напряжения двух видов: изгиба и кручения.
Пружина изгиба — применяется для передачи упругих деформаций при незначительных изменениях геометрических размеров пружины или пакета пружин (рессоры, тарельчатые пружины).Они имеют разнообразную простую форму ( торсионы, стопорные кольца и шайбы, упругие зажимы, элементы реле и т.п.)
Пружины кручения — могут быть двух видов:
- торсионные — стержень, работающий на кручение (имеет большую длину, чем витая пружина)
- витые пружины, работающие на кручение (как в бельевых прищепках, в мышеловках и в канцелярских дыроколах).
В приборостроении известна пружина Бурдона — трубчатая пружина в манометрах для измерения давления, играющая роль чувствительного элемента.
По конструкции:
- витые цилиндрические (винтовые);
- витые конические (амортизаторы);
- спиральные (в балансе часов);
- плоские;
- пластинчатые (например, рессоры);
- тарельчатые;
- волновые
- торсионные;
- жидкостные;
- газовые.
Основные параметры пружин[править | править код]
Силовые характеристики пружин: 1 — растущая, 2 — линейная, 3 — падающая, 4 — постоянная, 5 — ступенчатая
Для витых цилиндрических и конических:
- количество витков
- шаг витка
- диаметр проволоки
- предельно воспринимаемая нагрузка
- линейная зависимость между деформацией (осадкой) пружины и нагрузкой, приложенной к ней
Для волновых:
- сечение ленты
- число витков
- число волн на виток
- коэффициент жёсткости
- предельная нагрузка
также усталостные характеристики материалов.
Материал и технология изготовления[править | править код]
Пружина может быть изготовлена из любого материала, имеющего достаточно высокие прочностные и упругие свойства (сталь, пластмасса, дерево, фанера, даже картон).
Материал различных резин имеет упругие свойства не требующие придания ей особой формы и часто применяется в прямом виде, однако из-за менее определённых характеристик в точных машинах используется реже.
Стальные пружины общего назначения изготавливают из высокоуглеродистых сталей (У9А-У12А, 65, 70), легированных марганцем, кремнием, ванадием (65Г, 60С2А, 65С2ВА). Для пружин, работающих в агрессивных средах, применяют нержавеющую сталь (12Х18Н10Т), бериллиевую бронзу (БрБ-2), кремнемарганцевую бронзу (БрКМц3-1), оловянноцинковую бронзу (БрОЦ-4-3), титановые (ВТ-16) и никелевые сплавы (A-286, INCONEL, ELGILOY).
Небольшие пружины можно навивать из готовой проволоки, в то время как мощные изготавливаются из отожжённой стали и закаляются уже после формовки.
Применение пружин[править | править код]
Одна из самых известных пружин — кольцо для ключей
Пружина — один из самых широко применяемых элементов механизмов, конструкций, приборов. Используется для компенсации размерных неточностей, износа, снятия вибраций, как накопитель энергии, для простого измерения давления, веса, усилий и ускорений; предохранения от ударов и перегрузок.
В мягкой мебели и мебельных петлях и лифтах, в кнопках-застёжках, в карабинах, пружинных булавках, пружинных весах, отбойных молотках, в современных рельсовых скреплениях, в сцеплении, в механизмах часов, простых механических автоматах. Гидравлическая аппаратура не мыслима без пружин, упругость необходима для работы кнопок и клавиш управляющих устройств, спусковых механизмов и взрывателей.
В канцелярских товарах[править | править код]
- скрепки и канцелярские прищепки
- авторучки и механические карандаши
- степлеры и дыроколы
В строительстве[править | править код]
- Простейшие доводчики без гасителей для калиток и дверей интенсивного пользования, в холодном климате для тамбуров.
- В возвратных механизмах ручных жалюзи, роликовых ставен и тяжелых секционных ворот.
- В клапанах направления движения в общественных местах.
- В лифтовых буферах.
- В строениях и конструкциях на неустойчивых грунтах, в геологически активных местностях, как гаситель сейсмических волн.
В пресс-формах и штампах[править | править код]
В пресс-формах и штампах применяются пружины сжатия с прямоугольным сечением проволоки, они называются инструментальными пружинами. Благодаря прямоугольному сечению проволоки, пружина имеет более жесткие пружинные свойства при относительно небольших размерах, что очень удобно для размещения их в пресс-формы и штампы.
В огнестрельном оружии[править | править код]
- Боевая пружина, возвратная пружина, пружина магазина
- В симуляции оружия, оружие для страйкбола — пружина обычно используется для выталкивания снаряда в пружинно-поршневых винтовках.
В механизмах постоянной силы[править | править код]
Конструкция механизма или самой пружины обеспечивает постоянное усилие на грузонесущем элементе в определенном диапазоне перемещения.
- Опоры постоянного усилия для трубопроводов
- Роликовые пружины постоянного усилия или момента
- Уплотнения трубопроводной арматуры
- Заданная нагрузка для плавающих подшипников
См. также[править | править код]
Примечания[править | править код]
Литература[править | править код]
- Справочные таблицы по деталям машин. — М.: Машиностроение, 1956.
- Техническая энциклопедия / Л. К. Мартенс. — М.: Советская энциклопедия, 1932. — Т. 18. — С. 424-464. — 898 с.
- Л. Е. Андреева. Упругие элементы приборов / В. И. Феодосьев. — М.: Машиностроение, 1962. — 456 с.
Источник
Прежде чем давать ответ на вопрос, как делают пружины растяжения или сжатия, необходимо прояснить их назначение, характеристики и их зависимость от геометрических размеров, свойств материалов и других влияющих факторов.
Определение
Пружина – это свёрнутая в спираль металлическая проволока. Её назначение – восстановление своих первоначальных размеров после деформации, вызванной растяжением или сжатием, а также упругое сопротивление такой деформации.
Геометрические особенности
В зависимости от назначения витки могут прилегать один к другому или иметь между собой некоторое расстояние. Также они бывают постоянного (цилиндрические) или переменного (конические) диаметров.
Крайние витки у пружин растяжения, как правило, отгибаются перпендикулярно остальным, чтобы за них можно было зацепиться. У пружин сжатия в некоторых случаях их шлифуют для получения плоской опорной поверхности.
Требования к материалам. Механические характеристики и термообработка
Процесс растяжения или сжатия – это деформация. Чтобы она могла происходить многократно, возникающие при изменении размеров напряжения не должны превышать предел упругости, т. е. некую величину, после которой возможно полное восстановление размеров.
Механические характеристики металлов, из которых изготавливают пружины, зависят от термообработки. В частности, у большинства углеродистых и легированных сталей упругость повышается после закалки. Чтобы избежать хрупкости металла или сплава, повысить его выносливость – способность воспринимать многократные деформации – его дополнительно подвергают отпуску.
У других пружинных материалов, не являющихся сталями – например, сплава 36НХТЮ, бериллиевая бронза и др. – улучшение механических параметров происходит после старения (нагрева и выдержки при высокой температуре).
В процессе изготовления – навивке – металл должен хорошо деформироваться. Его предел текучести – напряжение, при котором пластическая (неупругая) деформация происходит без увеличения нагрузки – должен быть как можно более низким. Для этого материал будущего изделия перед началом технологического процесса отжигают.
Один из центральных процессов изготовления – получение проволочной спирали. Он производится навивкой проволоки или прутка на оправку. Она может иметь цилиндрическую коническую или другую форму.
В зависимости от назначения изделия витки навиваются вплотную один к другому или с определённым шагом.
Плотная навивка обычно применяется для пружин растяжения, с шагом – для сжатия.
Холодный и горячий способы
Навивка пружинной проволоки на оправку может производиться с предварительным нагревом и без него.
При изготовлении изделий из тонкой проволоки нагрузка на оборудование невелика. Поэтому процесс можно вести холодным способом, без предварительного нагрева материала. Выбирая радиус оправки, следует учесть, что у до начала пластической деформации материалы сохраняют определённый запас упругости. После окончания навивки диаметр витков увеличивается.
Если проволока изготовлена из стали, обладающей в состоянии поставки высоким пределом текучести, перед началом процесса, её отжигают – нагревают и медленно охлаждают вместе с печью.
При изготовлении пружин и прутка большого диаметра (обычно более 16 мм) навивка ведётся горячим способом. Пруток нагревают до температуры, при которой текучесть снижается до минимума (около 600 С) и навивают на оправку, не охлаждая.
После окончания навивки у будущих пружин растяжения отгибают крайние витки, придают им требуемую форму. У пружин сжатия они могут шлифоваться, если последующая эксплуатация потребует плоских опорных поверхностей.
Термообработка после навивки
Как уже отмечалось ранее, механические свойства материалов пружин могут значительно меняться в зависимости от состояния материала.
Стальные — после завершения техпроцессов, связанных с пластической деформацией подвергают закалке и отпуску. Конкретный набор термических процессов определяется свойствами сталей и требованиями к готовым изделиям.
Пружины из других сплавов упрочняют другими способами, например, старением.
Нанесение покрытий
Поверхность готовой продукции для придания ей коррозионной стойкости подвергается химической обработке: оксидирование, анодирование, покрытие цинком и т.д.
Выбор конкретного вида обработки определяется материалом пружины и предполагаемыми условиями эксплуатации.
Источник
Как известно, существуют различные виды пружин, которые отличаются не только по конструкции, но еще и по способу взаимодействия с остальными механизмами в узлах. Так, например, пружины сжатия работают на сжатие, пружины растяжения — на растяжение, ну а пружины кручения, соответственно, на изгиб и скручивание. При этом данные виды пружин имеют витую форму, в отличии от той же тарельчатой пружины или от любого типа пружин-рессор. Само собой, технология изготовления пружин витого типа будет отличаться от того как происходит производство пружин с другой конструкцией.
В целом, технология изготовления пружин подразумевает под собой совокупность последовательного использования специальных технологических инструментов, например, станочного оборудования и каких-либо сырьевых материалов. При этом, само производство пружин может происходить за разное число этапов и с использованием различных способов, которые выбирает непосредственно сам завод-производитель, в зависимости от назначения конкретной пружины. Соответственно, технология меняется исходя из всех характеристик и конструкционных параметров у этого металлического изделия.
Пожалуй, наиболее распространенными в промышленности и быту считаются как раз таки витые виды пружин, а именно, кручения, сжатия, растяжения. По этой причине нами сегодня будет рассмотрено, что представляет технология изготовления пружин из данной классификации. Вообще, наличие специальной навивки в конструкции позволяет подобным пружинам многократно воспринимать повторяющиеся нагрузки, проявляя высокую степень устойчивости к разным механическим воздействиям без потери своих характеристик, в числе которых имеются следующие физико-химические свойства:
- Коэффициент упругости
- Предел воспринимаемой нагрузки
- Усталостная прочность
Именно эти параметры влияют на продолжительность, а главное, на качество работы пружин. Собственно, для того, чтобы обеспечить данным изделиям максимально возможную долгосрочность эксплуатации, производство пружин должно осуществляться из надежного сырьевого материала, посредством поэтапного применения разных технически процессов на специальном оборудовании. Как правило, навивка осуществляется оператором из стальной проволоки на токарных станках либо вручную, либо через автомат одним из двух основных способов: горячим методом или же холодным методом.
Холодная технология изготовления пружин
Производство пружин холодным способом в Российской Федерации выполняют чуть чаще, нежели горячим, ввиду наиболее низкой себестоимости производства. Для таких работ не требуются дополнительные дорогостоящие станки, кроме навивочного. Собственно, такой метод предполагает использование оборудования, оснащенного двумя основными валиками, через которые и происходит навивка. Верхний из валиков позволяет регулировать натяжение, а также задавать направление завивки, используя для этого специально установленный винт. Сам процесс изготовления выполняется примерно так:
- Подготавливается специальная сталь для изготовления пружин (стальная проволока).
- Проволока просовывается через планку в суппорте.
- Ее конец прочно закрепляется на оправке при помощи зажима.
- Через верхний валик устанавливается необходимое натяжение.
- В зависимости от диаметра проволоки выбирается скорость вращения.
- Запускается в работу валик, наматывающий пружину.
- По мере достижения необходимого числа витков, проволока обрезается.
- В завершении деталь обрабатывается механически и термически.
Несмотря на то, что форма изготавливаемого изделия может быть как бочкообразной, так и цилиндрической, или даже конической, холодная технология изготовления пружин не позволяет использовать для изготовления пружин сталь диаметром более 16 миллиметров. Механическая обработка проводится для устранения зазубрин, сколов или же любых других дефектов на поверхности метиза, полученных в результате предыдущего проката проволоки, либо во время непосредственного процесса навивки с целью обеспечения наиболее лучшего качества изделия и повышения срока его эксплуатации.
Кроме того, немаловажным этапом является последующая термическая обработка, за счет проведения которой заготовка сможет избавиться от всех полученных во время навивки внутренних напряжений. При этом сам метод обработки выбираю исходя из того, какая была использована сталь для изготовления пружин. В некоторых случаях используют и отпуск и закалку, в некоторых, например, в бронзе, только лишь низкотемпературный отпуск. Так или иначе, каждый из данных процессов позволяет изделию достичь основных своих критериев, в числе которых состоит их великолепная упругость.
Горячая технология изготовления пружин
В отличии от холодного способа, горячее производство пружин подразумевает лишь изготовление изделий с диаметром от 10 миллиметров. То есть метизы меньших габаритов не получится сделать таким способом априори. Горячая технология изготовления пружин для создания заготовок требует проводить процедуру равномерного нагрева. При этом сам нагрев производится очень быстро на специальном станке. После чего разогретый до красна пруток необходимо просунуть через фиксирующую планку в навивочный станок и закрепить концы заготовки в зажимах и выполнять следующие этапы:
- Задать необходимое натяжение через верхний валик.
- Выбрать скорость вращения, в зависимости от диаметра.
- Включить станок, начав процесс навивки проволоки.
- По окончании работ снять цельную заготовку.
- Отправить изделие на термическую обработку.
- Максимально охладить спираль в масле.
- Провести механическую обработку поверхности.
- Нанести защитный антикоррозийный слой.
Обратите внимание, что горячая технология изготовления пружин для экономичного расходования сырьевых материалов не предусматривает разрезание пружины по мере того, как будет достигнут необходимый размер изделия. Это значит, что навивка происходит сразу на всю длину заготовки, а уже потом от нее отрезают куски необходимой длины. Повторная термическая обработка изделия необходима для снятия внутреннего напряжения. Охлаждать заготовку в масле, а не в воде рекомендуется по причине того, что во время долгой закалки в воде горячая сталь может попросту пустить трещину.
Тем не менее, если технология изготовления пружин требует проводить закалку как раз в воде, то необходимо соблюдать временной диапазон от 1 до 3 секунд, после чего так же опустить заготовку в масло. После этого пружину вынимают и очищают от масла. Далее уже идет аналогичный холодному методу навивки этап механической обработки изделия: заточка, шлифовка и другие технологические операции. Кроме того, для улучшения износостойкости изготовленных обеими способами пружин довольно часто производители применяют так же антикоррозионную обработку поверхностей изделия.
Сталь для изготовления пружин
Поскольку пружины зачастую используются для гашения каких-либо типов нагрузок, сталь для изготовления пружин должна иметь очень высокие технические характеристики. В зависимости от предназначения итоговых изделий, для их создания могут использоваться самые различные марки стали. Однако, наиболее часто, производство пружин выполняется из углеродистой и высоколегированной стали. Как правило, заводы-изготовители используют такие марки, как 50ХФА, 50ХГФА, 55ХГР, 55С2, 60С2, 60С2А, 60С2Н2А, 65Г, 70СЗА, У12А, 70Г, а также ещё множество других стальных сплавов.
Среднеуглеродистые и высокоуглеродистые марки стали, а также низколегированные стальные сплавы, которые задействует любое производство пружин, называются рессорно-пружинными. Зачастую, сталь для изготовления пружин обозначается еще как пружинная сталь. Стандартом для ее производства считают ГОСТ 14959-79, который предписывает все допуски и требования к техническим характеристикам. По госстандарту, пружинная сталь должна иметь очень качественную поверхность без наличия каких-либо дефектов, способных привести к частичному или же полному разрушению.
Дело в том, что при наличии, например, трещин на поверхности изделий, в процессе их эксплуатации при тяжелых различных тяжелых условиях, все усталостные явления будут концентрироваться как раз в наименее устойчивых дефектных местах. Именно поэтому вся пружинная сталь до того, как началось непосредственное производство пружин, должна пройти процедуру проверки на соответствие установленным требованиям ГОСТ 14959-79. Кроме того, сталь для изготовления пружин должна иметь хорошую упругость и проявлять высокую устойчивость к агрессивным воздействиям.
Достичь этого помогает, во-первых, химический состав того или иного сплава, так как под конкретные рабочие условия подбирается конкретная сталь для изготовления пружин. Во-вторых, противостоять напряжению и разрушению позволяют процесс закалки и отпуска изделий. Проведение данных технологических процессов подразумевает любая технология изготовления пружин, однако для каждой марки стали есть свои нюансы. В частности, этим нюансом является среда закаливания, в роли которой выступают масло или вода, а также еще и сама температура, при которой идет закаливание.
Собственно, температура при которой закаливается сталь для изготовления пружин, варьируется в пределах от +800°С до +900°, в зависимости от конкретного сплава. А отпуск проводится уже при диапазоне от +300°С до +480°С. Это обусловлено тем, что именно при подобных температурах возможно достичь одного из самых важных параметров пружинной стали — наибольшего предела упругости стали. Твердость получаемой продукции равняется 35 — 45 единицам твердости по Шору, что равнозначно значению от 1300 до 1600 килограмм на один квадратный миллиметр поверхности.
Характеристики стали для изготовления пружин
Марка сплава | Термический режим | Характеристики | |||||
σ т | σ в | δ5 | φ | ||||
Температура закалки | Среда закалки | Температура отпуска | |||||
Не менее | |||||||
65 | 840°С | Масло | 480°С | 80кгс/мм2 | 100кгс/мм2 | 10% | 35% |
70 | 830°С | 85кгс/мм2 | 105кгс/мм2 | 9% | 30% | ||
75 | 820°С | 90кгс/мм2 | 110кгс/мм2 | ||||
85 | 100кгс/мм2 | 115кгс/мм2 | 8% | ||||
60Г | 840°С | 80кгс/мм2 | 100кгс/мм2 | ||||
65Г | 830°С | 80кгс/мм2 | 100кгс/мм2 | ||||
70Г | 85кгс/мм2 | 105кгс/мм2 | 7% | 25% | |||
55ГС | 820°С | 80кгс/мм2 | 100кгс/мм2 | 8% | 30% | ||
50С2 | 870°С | Масло или вода | 460°С | 110кгс/мм2 | 120кгс/мм2 | 6% | 30% |
55С2 | 120кгс/мм2 | 130кгс/мм2 | |||||
55С2А | |||||||
60С2 | Масло | 25% | |||||
60С2А | 420°С | 140кгс/мм2 | 160кгс/мм2 | 20% | |||
70С3А | 860°С | 460°С | 160кгс/мм2 | 180кгс/мм2 | 25% | ||
50ХГ | 840°С | 440°С | 110кгс/мм2 | 130кгс/мм2 | 7% | 35% | |
50ХГА | 120кгс/мм2 | ||||||
55ХГР | 830°С | 450°С | 125кгс/мм2 | 140кгс/мм2 | 5% | 30% | |
50ХФА | 850°С | 520°С | 110кгс/мм2 | 130кгс/мм2 | 8% | 35% | |
50ХГФА | 120кгс/мм2 | 6% | |||||
60С2ХФА | 410°С | 170кгс/мм2 | 190кгс/мм2 | 5% | 20% | ||
50ХСА | 520°С | 120кгс/мм2 | 135кгс/мм2 | 6% | 30% | ||
65С2ВА | 420°С | 170кгс/мм2 | 190кгс/мм2 | 5% | 20% | ||
60С2Н2А | 880°С | 160кгс/мм2 | 175кгс/мм2 | 6% | |||
60С2ХА | 870°С | 180кгс/мм2 | 5% | ||||
60СГА | 860°С | 460°С | 140кгс/мм2 | 160кгс/мм2 | 6% | 25% |
Условные обозначения:
σ т — предел текучести
σ в — предел кратковременной прочности
δ5 — относительное удлинение при разрыве
φ — относительное сужение
Источник