Испытания на растяжение выполняем

Испытания на растяжение выполняем thumbnail

Лабораторная работа № 1

Цель работы – изучить поведение малоуглеродистой стали при растяжении и определить ее механические характеристики.

Основные сведения

Испытания на растяжение являются основным и наиболее распространенным методом лабораторного исследования и контроля механических свойств материалов.

Эти испытания проводятся и на производстве для установления марки поставленной заводом стали или для разрешения конфликтов при расследовании аварий.

В таких случаях, кроме металлографических исследований, определяются главные механические характеристики на образцах, взятых из зоны разрушения конструкции. Образцы изготавливаются по ГОСТ 1497-84 и могут иметь различные размеры и форму (рис. 1.1).

Образцы для испытания на растяжение

Рис. 1.1. Образцы для испытания на растяжение

Между расчетной длиной образца lо и размерами поперечного сечения Ао (или dо для круглых образцов) выдерживается определенное соотношение:

В испытательных машинах усилие создается либо вручную — механическим приводом, либо гидравлическим приводом, что присуще машинам с большей мощностью.

В данной работе используется универсальная испытательная машина УММ-20 с гидравлическим приводом и максимальным усилием 200 кН, либо учебная универсальная испытательная машина МИ-40КУ (усилие до 40 кН).

Порядок выполнения и обработка результатов

Образец, устанавливаемый в захватах машины, после включения насоса, создающего давление в рабочем цилиндре, будет испытывать деформацию растяжения. В измерительном блоке машины есть шкала с рабочей стрелкой, по которой мы наблюдаем рост передаваемого усилия F.

Зависимость удлинения рабочей части образца от действия растягивающей силы во время испытания отображается на миллиметровке диаграммного аппарата в осях F-Δl (рис. 1.2).

В начале нагружения деформации линейно зависят от сил, потому участок I диаграммы называют участком пропорциональности. После точки В начинается так называемый участок текучести II.

На этой стадии стрелка силоизмерителя как бы спотыкается, приостанавливается, от точки В на диаграмме вычерчивается либо прямая, параллельная горизонтальной оси, либо слегка извилистая линия — деформации растут без увеличения нагрузки. Происходит перестройка структуры материала, устраняются нерегулярности в атомных решетках.

Далее самописец рисует участок самоупрочнения III. При дальнейшем увеличении нагрузки в образце происходят необратимые, большие деформации, в основном концентрирующиеся в зоне с макронарушениями в структуре – там образуется местное сужение — «шейка».

На участке IV фиксируется максимальная нагрузка, затем идет снижение усилия, ибо в зоне «шейки» сечение резко уменьшается, образец разрывается.

При нагружении на участке I в образце возникают только упругие деформации, при дальнейшем нагружении появляются и пластические — остаточные деформации.

Если в стадии самоупрочнения начать разгружать образец (например, от т. С), то самописец будет вычерчивать прямую СО1. На диаграмме фиксируются как упругие деформации Δlу (О1О2), так и остаточные Δlост (ОО1). Теперь образец будет обладать иными характеристиками.

Так, при новом нагружении этого образца будет вычерчиваться диаграмма О1CDЕ, и практически это будет уже другой материал. Эту операцию, называемую наклеп, широко используют, например, в арматурных цехах для улучшения свойств проволоки или арматурных стержней.

Диаграмма растяжения (рис. 1.2) характеризует поведение конкретного образца, но отнюдь не обобщенные свойства материала. Для получения характеристик материала строится условная диаграмма напряжений, на которой откладываются относительные величины – напряжения σ=F/A0 и относительные деформации ε=Δl/l0 (рис. 1.3), где А0, l0 – начальные параметры образца.

Диаграмма растяжения образца из малоуглеродистой стали

Рис. 1.2. Диаграмма растяжения образца из малоуглеродистой стали

Условная диаграмма напряжений при растяжении

Рис. 1.3. Условная диаграмма напряжений при растяжении

Условная диаграмма напряжений при растяжении позволяет определить следующие характеристики материала (рис. 1.3):

σпц – предел пропорциональности – напряжение, превышение которого приводит к отклонению от закона Гука. После наклепа σпц может быть увеличен на 50-80%;

σу – предел упругости – напряжение, при котором остаточное удлинение достигает 0,05%. Напряжение σу очень близко к σпц и обнаруживается при более тонких испытаниях. В данной работе σу не устанавливается;

σт – предел текучести – напряжение, при котором происходит рост деформаций при постоянной нагрузке.

Иногда явной площадки текучести на диаграмме не наблюдается, тогда определяется условный предел текучести, при котором остаточные деформации составляют ≈0,2% (рис. 1.4);

Определение предела упругости и условного предела текучести

Рис. 1.4. Определение предела упругости и условного предела текучести

σпч (σв) – предел прочности (временное сопротивление) – напряжение, соответствующее максимальной нагрузке;

σр – напряжение разрыва. Определяется условное σур и истинное σир=Fр/Аш, где Аш – площадь сечения «шейки» в месте разрыва.

Определяются также характеристики пластичности – относительное остаточное удлинение

δ = (l1 – l0)∙100% / l0,

где l1 – расчетная длина образца после разрыва,
и относительное остаточное сужение

ψ = (А0 — Аш)∙100% / А0.

По диаграмме напряжений можно приближенно определить модуль упругости I рода

E=σпц/ε=tgα,

причем после операции наклепа σпц возрастает на 20-30%.

Работа, затраченная на разрушение образца W, графически изображается на рис. 1.2 площадью диаграммы OABDEO3. Приближенно эту площадь определяют по формуле:
W = 0,8∙Fmax∙Δlmax.

Читайте также:  Почему нельзя греть растяжение

Удельная работа, затраченная на разрушение образца, говорит о мере сопротивляемости материала разрушению w = W/V, где V = A0∙l0 – объем рабочей части образца.

По полученным прочностным и деформационным характеристикам и справочным таблицам делается вывод по испытуемому материалу о соответствующей марке стали

Контрольные вопросы

  1. Изобразите диаграмму растяжения образца из малоуглеродистой стали (Ст.3). Покажите полные, упругие и остаточные абсолютные деформации при нагружении силой, большей, чем Fт.
  2. На каком участке образца происходят основные деформации удлинения? Как это наблюдается на образце? Какие нагрузки фиксируются в этот момент?
  3. Объясните, почему после образования шейки дальнейшее растяжение происходит при все уменьшающейся нагрузке?
  4. Перечислите механические характеристики, определяемые в результате испытаний материала на растяжение. Укажите характеристики прочности и пластичности.
  5. Дайте определение предела пропорциональности.
  6. Дайте определение предела упругости.
  7. Дайте определение предела текучести.
  8. Дайте определение предела прочности.
  9. Как определить предел текучести при отсутствии площадки текучести? Покажите, как это сделать, по конкретной диаграмме.
  10. Какие деформации называются упругими, какие остаточными? Укажите их на полученной в лабораторной работе диаграмме растяжения стали.
  11. Как определяется остаточная деформация после разрушения образца?
  12. Выделите на диаграмме растяжения образца из мягкой стали упругую часть его полного удлинения для момента действия максимальной силы.
  13. Какое явление называется наклепом? До какого предела можно довести предел пропорциональности материалов с помощью наклепа?
  14. Как определяется работа, затраченная на разрушение образца? О каком свойстве материала можно судить по удельной работе, затраченной на разрушение образца?
  15. Как определить марку стали и допускаемые напряжения для нее после проведения лабораторных испытаний?
  16. Чем отличается диаграмма истинных напряжений при растяжении от условной диаграммы?
  17. Можно ли определить модуль упругости материала по диаграмме напряжений?
  18. Как определить работу, затрачиваемую на деформации текучести лабораторного образца?

Испытание материалов на сжатие >
Краткая теория >
Примеры решения задач >

Источник

Испытание на растяжение металла заключаются в растяжении образца с построением графика зависимости удлинения образца (Δl) от прилагаемой нагрузки (P), с последующим перестроением этой диаграммы в диаграмму условных напряжений (σ — ε)

Испытания на растяжение проводятся по ГОСТ 1497, по этому же ГОСТу определяются и образцы на которых проводятся испытания.

Образцы для испытания на растяжениеКак уже говорилось выше, при испытаниях строится диаграмма растяжения металла. На ней есть несколько характерных участков:

Испытание на растяжение

  1. Участок ОА — участок пропорциональности между нагрузкой Р и удлинением ∆l. Это участок, на котором сохраняется закон Гука. Данная пропорциональность была открыта Робертом Гуком в 1670 г. и в дальнейшем получила название закона Гука.
  2. Участок ОВ — участок упругой деформации. Т.е., если к образцу приложить нагрузку, не превышающую Ру, а потом разгрузить, то при разгрузке деформации образца будут уменьшаться по тому же закону, по которому они увеличивались при нагружении

Выше точки В диаграмма растяжения отходит от прямой — деформация начинает расти быстрее нагрузки, и диаграмма принимает криволинейный вид. При нагрузке, соответствующей Рт (точка С ), диаграмма переходит в горизонтальный участок. В этой стадии образец получает значительное остаточное удлинение практически без увеличения нагрузки. Получение такого участка на диаграмме растяжения объясняется свойством материала деформироваться при постоянной нагрузке. Это свойство называется текучестью материала, а участок диаграммы растяжения, параллельный оси абсцисс, называется площадкой текучести.
Зуб текучести на диаграмме растяжения металлаИногда площадка текучести носит волнообразный характер. Это чаще касается растяжения пластичных материалов и объясняется тем, что вначале образуется местное утонение сечения, затем это утонение переходит на соседний объем материала и этот процесс развивается до тех пор, пока в результате распространения такой волны не возникает общее равномерное удлинение, отвечающее площадке текучести. Когда имеется зуб текучести, при определении механических свойств материала, вводят понятия о верхнем и нижнем пределах текучести.

После появления площадки текучести, материал снова приобретает способность сопротивляться растяжению и диаграмма поднимается вверх. В точке D усилие достигает максимального значения Pmax. При достижении усилия Pmax на образце появляется резкое местное сужение — шейка. Уменьшение площади сечения шейки вызывает падение нагрузки и в момент, соответствующий точке K диаграммы, происходит разрыв образца.

Прилагаемая нагрузка для растяжения образца зависит от геометрии этого образца. Чем больше площадь сечения, тем более высокая нагрузка необходима для растяжения образца. По этой причине, получаемая машинная диаграмма не дает качественной оценки механических свойств материала. Чтобы исключить влияние геометрии образца, машинную диаграмму перестраивают в координатах σ − ε путем деления ординат P на первоначальную площадь сечения образца A0 и абсцисс ∆l на lо. Перестроенная таким образом диаграмма называется диаграммой условных напряжений. Уже по этой, новой диаграмме, определяют механические характеристики материала.

Определяются следующие механические характеристики:

Предел пропорциональности σпц – наибольшее напряжение, после которого нарушается справедливость закона Гука σ = Еε , где Е – модуль продольной упругости, или модуль упругости первого рода. При этом Е =σ/ε = tgα , т. е. модуль E это тангенс угла наклона прямолинейной части диаграммы к оси абсциссФормула определения предела пропорциональности

Читайте также:  Упражнения на растяжение мышц грудного отдела

Предел упругости σу — условное напряжение, соответствующее появлению остаточных деформаций определенной заданной вели­чины (0,05; 0,001; 0,003; 0,005%); допуск на остаточную деформа­цию указывается в индексе при σуФормула определения предела упругости

Предел текучести σт – напряжение, при котором происходит увеличение деформации без заметного увеличения растягивающей нагрузки

Формула расчета предела текучестиТакже выделяют условный предел текучести — это условное напряжение, при котором остаточная деформация достигает определенной величины (обычно 0,2% от рабочей длины образца; тогда условный предел текучести обозначают как σ0,2). Величину σ0,2 определяют, как правило, для материалов, у которых на диаграмме отсутствует площадка или зуб текучести

Предел прочности (временное сопротивление разрыву) σв – напряжение, соответствующее наибольшей нагрузке Pmax , предшествующей разрыву образца

Формула расчета предела прочности

Кроме характеристик прочности материала, при испытании на растяжение определяют также характеристики пластичности — относительное удлинение δ и относительное сужение ψ

Формула расчета относительного удлинения

где lо – первоначальная расчетная длина образца, а lк – конечная расчетная длина образца

Формула расчета относительного сужения образца

Площади поперечного сечения образца

Изопропиловый спирт цена за тонну оптом — https://www.dcpt.ru

Источник

Отвечает эксперт ЗАО ЦНИИПСК им. Мельникова

Испытание на растяжение металла заключаются в растяжении образца с построением графика зависимости удлинения образца (Δl) от прилагаемой нагрузки (P), с последующим перестроением этой диаграммы в диаграмму условных напряжений (σ — ε)

Испытания на растяжение проводятся по ГОСТ 1497, по этому же ГОСТу определяются и образцы на которых проводятся испытания.

Как уже говорилось выше, при испытаниях строится диаграмма растяжения металла. На ней есть несколько характерных участков:

  1. Участок ОА — участок пропорциональности между нагрузкой Р и удлинением ∆l. Это участок, на котором сохраняется закон Гука. Данная пропорциональность была открыта Робертом Гуком в 1670 г. и в дальнейшем получила название закона Гука.
  2. Участок ОВ — участок упругой деформации. Т.е., если к образцу приложить нагрузку, не превышающую Ру, а потом разгрузить, то при разгрузке деформации образца будут уменьшаться по тому же закону, по которому они увеличивались при нагружении

Выше точки В диаграмма растяжения отходит от прямой — деформация начинает расти быстрее нагрузки, и диаграмма принимает криволинейный вид. При нагрузке, соответствующей Рт (точка С ), диаграмма переходит в горизонтальный участок. В этой стадии образец получает значительное остаточное удлинение практически без увеличения нагрузки. Получение такого участка на диаграмме растяжения объясняется свойством материала деформироваться при постоянной нагрузке. Это свойство называется текучестью материала, а участок диаграммы растяжения, параллельный оси абсцисс, называется площадкой текучести.

Иногда площадка текучести носит волнообразный характер. Это чаще касается растяжения пластичных материалов и объясняется тем, что вначале образуется местное утонение сечения, затем это утонение переходит на соседний объем материала и этот процесс развивается до тех пор, пока в результате распространения такой волны не возникает общее равномерное удлинение, отвечающее площадке текучести. Когда имеется зуб текучести, при определении механических свойств материала, вводят понятия о верхнем и нижнем пределах текучести.

После появления площадки текучести, материал снова приобретает способность сопротивляться растяжению и диаграмма поднимается вверх. В точке D усилие достигает максимального значения Pmax. При достижении усилия Pmax на образце появляется резкое местное сужение — шейка. Уменьшение площади сечения шейки вызывает падение нагрузки и в момент, соответствующий точке K диаграммы, происходит разрыв образца.

Прилагаемая нагрузка для растяжения образца зависит от геометрии этого образца. Чем больше площадь сечения, тем более высокая нагрузка необходима для растяжения образца. По этой причине, получаемая машинная диаграмма не дает качественной оценки механических свойств материала. Чтобы исключить влияние геометрии образца, машинную диаграмму перестраивают в координатах σ − ε путем деления ординат P на первоначальную площадь сечения образца A0 и абсцисс ∆l на lо. Перестроенная таким образом диаграмма называется диаграммой условных напряжений. Уже по этой, новой диаграмме, определяют механические характеристики материала.

Определяются следующие механические характеристики:

Предел пропорциональности σпц – наибольшее напряжение, после которого нарушается справедливость закона Гука σ = Еε , где Е – модуль продольной упругости, или модуль упругости первого рода. При этом Е =σ/ε = tgα , т. е. модуль E это тангенс угла наклона прямолинейной части диаграммы к оси абсцисс

Предел упругости σу — условное напряжение, соответствующее появлению остаточных деформаций определенной заданной вели­чины (0,05; 0,001; 0,003; 0,005%); допуск на остаточную деформа­цию указывается в индексе при σу

Предел текучести σт – напряжение, при котором происходит увеличение деформации без заметного увеличения растягивающей нагрузки

Также выделяют условный предел текучести — это условное напряжение, при котором остаточная деформация достигает определенной величины (обычно 0,2% от рабочей длины образца; тогда условный предел текучести обозначают как σ0,2). Величину σ0,2 определяют, как правило, для материалов, у которых на диаграмме отсутствует площадка или зуб текучести

Читайте также:  Стенд для растяжения пружины

Предел прочности (временное сопротивление разрыву) σв – напряжение, соответствующее наибольшей нагрузке Pmax , предшествующей разрыву образца

Кроме характеристик прочности материала, при испытании на растяжение определяют также характеристики пластичности — относительное удлинение δ и относительное сужение ψ

где lо – первоначальная расчетная длина образца, а lк – конечная расчетная длина образца

Источник

Испытание на растяжение

Что такое испытание на растяжение?

Испытания на растяжение являются одними из наиболее фундаментальных и распространенных методов механического контроля. При испытании на растяжение применяется растягивающее усилие к материалу и измеряется реакция образца на напряжение. Таким образом, данное исследование определяет насколько прочен материал и насколько он может удлиниться. Испытания на растяжение обычно проводятся на универсальных испытательных машинах, которые являются самым простым и стандартизированным способом произвести данное тестирование.

  12.png

ООО «Глобалтест» представляет такие компании-производители как Galdabini SPA и Jinan Kason Testing Equipment CO. LTD.

С какой целью проводятся данные испытания?

Мы можем многое узнать о материале из испытаний на растяжение. Измеряя образец во время его растяжения, мы можем получить полные характеристики его свойств на растяжение. При нанесении этих данных на график кривой напряжение/деформация мы можем проследить, как материал реагировал на силу напряжение в каждой точке. Для нас наиболее значимой является точка разрушения, в которой образец разрушается, однако на графике также прослеживается предел пропорциональ­ности, предел текучести, которые предшествуют пределу прочности.

13.jpg

Предел прочности при растяжении

Один из наиболее важных свойств, которые мы можем определить у материала, является его предел прочности при растяжении (UTS). Это максимальное напряжение, которое выдерживает образец во время его испытания. UTS может или не может равняться прочности образца на разрыв, в зависимости от того, является ли материал, из которого изготовлен образец, хрупким, пластичным или обладает свойствами обоих. Иногда материал в лабораторных условиях может быть пластичным, а при вводе его в эксплуатацию и воздействии экстремально низких температур переходить в хрупкое состояние.

 Закон Гука

Для большинства материалов в начале испытаний будет прослеживаться линейная зависимость между приложенным усилием или нагрузкой и удлинением. Эта линейная зависимость подчиняется отношению, определяемому как «закон Гука», где отношение напряжения к деформации является постоянным σ/ε = E, где E – это наклон линии в этой области, в которой напряжение σ пропорционально деформации (ε) и называется модулем упругости или модулем Юнга.

14.jpg

Модуль упругости

Модуль упругости – это мера жесткости материала, которая определяется в начальной линейной области кривой. В пределах этой линейной области нагрузка может быть прекращена, и материал в этом случае возвращается к прежнему состоянию, в котором он находился до применения нагрузки. Как только кривая больше не линейна, то закон Гука больше не применяется, и образец уже находится в некоторой деформации. Эта точка, при которой происходит отклонение от линейной зависимости, называется приделом упругости или пропорциональности. С этого момента материал деформируется на любое дальнейшее увеличение нагрузки. Он не вернется к своему первоначальному состоянию, если образец будет снят.

Предел текучести

«Предел текучести» материала определяется как напряжение, приложенное к материалу, при котором начинает происходить пластическая деформация.

Метод смещения

Для некоторых материалов (например, металлов или пластмасс) отклонение от линейной зависимости тяжело идентифицировать. Поэтому для определения данного предела используется метод смещения для определения текучести материала. Эта методика обычно применяется для измерения предела текучести металлов. При испытании металлов в соответствии с ASTM E8 / E8M смещение указывается в процентах от деформации (обычно 0,2%). Напряжение (R), которое определяется из точки пересечения «r», когда линия линейной упругой области (с наклоном, равным модулю упругости), оттянутой из смещения «m», становится пределом текучести.

Альтернативные методы

Кривые растяжения некоторых материалов не имеют четко определенной линейной области. В этих случаях стандарт ASTM E111 предусматривает альтернативные методы определения модуля материала, а также модуля Юнга. Этими альтернативными методами являются секущий и касательный методы.

 Деформация

Мы также сможем определить величину растяжения или удлинения, которому подвергается образец во время испытания на растяжение. Она может быть выражена как абсолютное изменения длины или как относительное изменение, называемое «деформацией». Абсолютная деформация (Δl) — измене­ние размера (длины образца при испытаниях на растяже­ние), относительная деформация (ε) — отношение абсолютной дефор­мации к первоначальной длине (l), т.е. ε = Δl/l.


Источник