Испытания на растяжение и сжатие сопромат

Испытания на растяжение и сжатие сопромат thumbnail

Конструктор, выбирая материал для проектируемой детали, а затем рассчитывая ее на прочность (жесткость, устойчивость), должен располагать данными о механических свойствах материала, т. е. его прочности, пластичности и т. п.

В связи с этим создано много различных видов испытаний, но основными и наиболее распространенными являются испытания на растяжение и сжатие. С их помощью удается получить наиболее важные характеристики материала, находящие прямое применение в расчетной практике.

Для испытания на растяжение используют специально изготовленные образцы (рис. 11), основной особенностью которых является наличие усиленных мест захвата и плавного перехода к сравнительно узкой ослабленной рабочей части. Начальную расчетную длину /0 образца принимают обычно раз в 10 большей диаметра d.

Стандартный образец для испытаний на растяжение

Рис. 11. Стандартный образец для испытаний на растяжение

Испытания на растяжение и сжатие проводят на специальных машинах, где усилие создают либо при помощи груза, действующего на образец через систему рычагов (рычажная машина), либо при помощи гидравлического давления, передаваемого на поршень (гидравлическая машина). Современные испытательные машины обычно снабжены прибором для автоматической записи диаграммы растяжения — сжатия. Это дает возможность сразу после испытаний получить вычерченную в определенном масштабе кривую F = / (At), которую называют диаграммой растяжения образца.

Диаграмма растяжения образца

Рис. 12. Диаграмма растяжения образца

На рис. 12 показан примерный вид диаграммы растяжения, полученной при испытании образца из малоуглеродистой стали. На диаграмме точка 0 соответствует началу растяжения образца. В начальной стадии испытания (до точки А с ординатой F„4) зависимость между силой и удлинением линейна, т. е. справедлив закон Гука. При растягивающей силе Fy (т. В), почти не отличающейся от Fm, в образце возникают первые остаточные деформации. При некотором значении растягивающей силы FT наблюдается рост удлинения образца без увеличения нагрузки. Это явление называется текучестью металла. Соответствующий участок диаграммы (почти горизонтальная линия) называется площадкой текучести.

В этой стадии деформации полированная поверхность образца становится матовой и на ней можно обнаружить сетку линий, наклоненных к оси образца под углом примерно 45°. Это так называемые линии Людерса — Чернова, представляющие собой следы сдвигов частиц материала. Направление указанных линий соответствует площадкам, на которых при растяжении образца возникают наибольшие касательные напряжения.

По окончании стадии текучести материал вновь начинает сопротивляться деформации (т. L), здесь связь между силой и удлинением нелинейна: удлинение растет быстрее нагрузки. Этот участок диаграммы называют зоной упрочнения. При силе, примерно равной Fmax, на образце появляется местное утонь- шение — шейка (т. С), в результате сопротивление образца падает и его разрыв (т. D) происходит при силе, меньшей Fmax.

Пользоваться построенной диаграммой растяжения образца неудобно, так как она существенно зависит от размера поперечного сечения образца и длины выбранной измерительной базы /0. Для того чтобы исключить влияние этих факторов, диаграмму Д/ = /(F) перестраивают: все ординаты делят на начальную площадь поперечного сечения Аа, а все абсциссы — на начальную расчетную длину /а. В результате получают так называемую условную диаграмму растяжения материала

Диаграмма растяжения пластичного материала

Рис. 13. Диаграмма растяжения пластичного материала

На диаграмме отмечены точки (и их ординаты), соответствующие механическим характеристикам, полученным при статических испытаниях на растяжение.

Предел пропорциональности — это наибольшее напряжение, до которог о материал следует закону Гука:

Испытания на растяжение и сжатие сопромат

При дальнейшем увеличении нагрузки диаграмма становится криволинейной. Однако если напряжения не превосходят определенной величины — предела упругости оу, то материал сохраняет свои упругие свойства, при разгрузке образец восстанавливает свою первоначальную форму и размеры.

Предел упругости — это наибольшее напряжение, до достижения которого в образце возникают только упругие деформации:

Испытания на растяжение и сжатие сопромат

Предел текучести — это напряжение, при котором проис ходит рост деформаций без заметного увеличения нагрузки:

Испытания на растяжение и сжатие сопромат

При напряжениях, больших а„ в конструкции развиваются пластические деформации, которые не исчезают при снятии нагрузки.

Ряд материалов при растяжении дает диаграмму без выраженной площадки текучести; для них устанавливается так называемый условный предел текучести. Условным пределом текучести оь,2 называется напряжение, которому соответствует остаточная деформация, равная 0,2%.

Предел прочности, или временное сопротивление — это условное напряжение, соответствующее наибольшей нагрузке, выдерживаемой образцом до разрушения:

Испытания на растяжение и сжатие сопромат

Напряжение, возникающее в образце в момент разрыва, называется истинным сопротивлением разрыву SK:

Испытания на растяжение и сжатие сопромат

где FK и Ак — соответственно сила и площадь поперечного сечения образца в момент разрыва.

Кроме перечисленных выше механических характеристик материала, при испытании на растяжение определяют также характеристики пластичности, к которым относятся относительное остаточное удлинение и относительное остаточное сужение при разрыве.

Относительное остаточное удлинение при разрыве S определяется по формуле

Испытания на растяжение и сжатие сопромат

где — длина рабочей части образца после разрушения; 10 — длина рабочей части образца до испытания.

Относительное остаточное сужение при разрыве Ч* является второй характеристикой пластичности:

Испытания на растяжение и сжатие сопромат

где А0 — начальная площадь поперечного сечения образца; Ак — площадь поперечного сечения образца в месте разрыва.

Данные характеристики служат для оценки пластичности материала, чем они выше, тем материал пластичнее. Условно считают, что к пластичным могут быть отнесены материалы, для которых д > 5%. К числу пластичных материалов можно отнести медь, алюминий, латунь, малоуглеродистую сталь и др. Менее пластичными являются дюраль и бронза. К числу слабопластичных материалов относится большинство легированных сталей.

Читайте также:  Растяжение мышц бедра что делать

На рис. 14, а представлены диаграммы растяжения различных пластичных материалов. Как видим, некоторые пластичные материалы не имеют ярко выраженной площадки текучести.

Диаграммы растяжения различных материалов

Рис. 14. Диаграммы растяжения различных материалов: а) пластичные материалы; б) хрупкий материал

Противоположным свойству пластичности является свойство хрупкости, т. е. способность материала разрушаться при незначительных остаточных деформациях. Для таких материалов величина остаточного удлинения при разрыве не превышает 2-5%, а в ряде случаев измеряется долями процента. Типичные хрупкие материалы — серый чугун, высокоуглеродистая инструментальная сталь, камень и др. Хрупкие материалы дают иного рода диаграммы растяжения (см. рис. 14, б).

Такая диаграмма не имеет явно выраженного прямолинейного участка, т. е. прямой пропорциональности между напряжением и относительным удлинением не наблюдается. У хрупкого материала отсутствует явление текучести, и деформации упруги почти вплоть до разрушения. Следует отметить, что деление материалов на пластичные и хрупкие является условным, так как в зависимости от условий испытания (скорость нагружения, температура и т. п.) и вида напряженного состояния хрупкие материалы способны вести себя как пластичные, а пластичные — как хрупкие.

Остановимся дополнительно еще на некоторых вопросах, связанных со статическими испытаниями малоуглеродистой стали (и других пластичных материалов) на растяжение. Опытным путем установлено, что при разгрузке образца, растянутого так, что в нем возникают напряжения выше предела упругости и даже выше предела текучести (например, от точки N диаграммы на рис. 15), линия разгрузки оказывается прямой, параллельной начальному участку ОА диаграммы. Следовательно, полная деформация образца состоит из двух частей — упругой, исчезающей после снятия нагрузки, и остаточной (пластической).

Закон упругой разгрузки

Рис. 15. Закон упругой разгрузки

Полное удлинение, соответствующее нагрузке в точке N, выражается отрезком OL, упругое — отрезком ML и пластическое — отрезком ОМ оси абсцисс диаграммы (см. рис. 15).

Упругая деформация и при напряжениях, больших предела пропорциональности, может быть также определена по закону Гука. Это следует из того, что линия разгрузки — прямая. Параллельность этой линии начальному участку диаграммы указывает, что модуль упругости Е при разгрузке имеет то же значение, что и при нагружении в пределах справедливости закона Гука.

Если подвергнуть повторному нагружению образец, который был предварительно растянут до возникновения в нем напряжений, больших предела текучести, то оказывается, что линия нагрузки практически совпадает с линией разгрузки, а часть диаграммы, лежащая левее точки, от которой производилась разгрузка, не повторяется. Таким образом, в результате предварительной вытяжки материала за предел текучести его свойства изменяются: повышается предел пропорциональности и уменьшается пластичность. Это явление называется наклепом. В определенном смысле можно сказать, что в результате наклепа материал упрочняется.

Уменьшение пластичности материала при наклепе подтверждается следующим. Пластичность материала характеризуется значением относительного остаточного удлинения при разрыве S пропорционально отрезку OL оси абсцисс диаграммы (см. рис. 15), а при наклепе оно пропорционально меньшему отрезку ML. так как часть диаграммы, лежащая левее точки N, не повторяется.

Наклеп может быть также следствием холодной обработки металла. Например, при изготовлении клепаных конструкций отверстия для заклепок зачастую продавливают (пробивают) на специальных прессах. В результате материал у краев отверстия оказывается наклепанным, обладает повышенной хрупкостью и при действии переменных напряжений в этой зоне возможно появление трещин. Поэтому целесообразно пробивать отверстия меньшего диаметра, чем требуется, а затем рассверливать их до заданного размера. При этом наклепанная часть материала будет удалена.

В других случаях наклеп полезен и его создают специально. Например, провода, тросы, стержни для арматуры железобетонных конструкций зачастую подвергают предварительной вытяжке за предел текучести.

Изложенная выше методика испытаний и соответствующая ей терминология складывались постепенно и включали в себя результаты работ многих ученых. Окончательную форму они приняли в XIX в., когда основным конструкционным материалом была малоуглеродистая сталь. Диаграмма для этой стали с ее характерными точками и определила номенклатуру механических характеристик.

Диаграмма растяжения (см. рис. 13), имеющая явно выраженную площадку текучести, характерна лишь для малоуглеродистой стали и некоторых сплавов цветных металлов. Диаграмма растяжения некоторых пластичных металлов и сплавов, не имеющих площадки текучести, представлена на рис. 16.

Диаграмма напряжения материала, не имеющего площадки текучести

Рис. 16. Диаграмма напряжения материала, не имеющего площадки текучести

Источник

Работа

Механические характеристики материала определяются в результате испытания образца на специальных прессах. Форма образца может быть различной, но чаще всего стержень с участком постоянного поперечного сечения (круглого или прямоугольного) длиной . Концы образца имеют специальные утолщения для их закрепления в испытательной машине.

Перед началом испытания материала на растяжение замеряется площадь поперечного сечения () средней части образца. Значение растягивающей силы (P) и удлинения его средней части () в каждый момент нагружения определяются специальными устройствами. При испытании нагрузка увеличивается медленно и плавно.

Читайте также:  Формула для нормального напряжения при растяжении сжатии

Современные испытательные машины снабжены записывающим прибором, который при испытании образца автоматически вычерчивает график зависимости между нагрузкой (P) и абсолютным удлинением (). График называется диаграммой растяжения (или диаграмма Бернулли).

Рассмотрим диаграмму растяжения для стали марки Ст. 3 (рис. 2.3). Эта диаграмма характеризует поведение данного образца, но не материала, из которого он сделан.

В начальной стадии испытания, до точки А с ординатой , зависимость между силой (P) и удлинением () носит линейный характер, что свидетельствует о линейной деформируемости образца. Затем диаграмма искривляется и при некотором значении растягивающей силы наблюдается значительный рост удлинения образца без увеличения нагрузки (текучесть материала). Практически горизонтальный участок диаграммы BC называется площадкой текучести, а точка B – критической точкой диаграммы.

При некотором значении растягивающей силы , соответствующем критической точке B (см. рис. 2.3), на поверхности образца, если он, например, полирован, заметно появление сначала нескольких полосок, параллельных между собой и расположенных под углом примерно к оси образца. Далее появляется вторая система линий, пересекающая первую и наклоненную к оси под тем же углом, что и первая. Такая система сопряженных линий называется линиями Людерса – Чернова, представляющие собой следы сдвигов частиц материала. Направления линий Людерса-Чернова соответствует площадкам, на которых при растяжении возникают наибольшие касательные напряжения.

За точкой C диаграммы удлинение образца начинает расти быстрее нагрузки. Число линий Людерса – Чернова растет, они сливаются друг с другом и, наконец, теряют ясность своих очертаний. Этот участок диаграммы растяжения называется зоной упрочнения.

В наивысшей точке диаграммы D при силе равной на образце внезапно появляется местное сужение – шейка, которая представляет собой результат накопления деформаций сдвига.

Сопротивление образца растяжению, после образования шейки, падает и его разрыв происходит в точке K при нагрузке:

.

При разрыве образца, как правило, появляется поперечная трещина в центре тяжести поперечного сечения (посредине шейки), а остальная часть сечения скалывается под углом к оси образца так, что на одной части разорванного образца образуется выступ, а на другой – кратер.

Линия разгрузки образца KL оказывается прямой и параллельной начальному участку диаграммы ОА. Следовательно, полная деформация образца состоит из двух частей: упругой, исчезающей после снятия нагрузки, и остаточной (пластической).

Источник

ВОЛГОГРАДСКИЙ ГОСУДАРСТВЕННЫЙ АРХИТЕКТУРНО-СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ

Кафедра «Информационные системы и математическое моделирование»

техническая механика

испытание материалов на растяжение и сжатие. диаграммы растяжения пластических и хрупких маиериалов

ЛИСТОВ 13

Волгоград 2010

Испытания материалов на растяжение и сжатие

При проектировании строительных конструкций, машин и механизмов инженеру необходимо знать значения величин, характеризующих прочностные и деформативные свойства материалов. Их можно получить путем механических испытаний, проводимых в эксперименталь­ных лабораториях на соответствующих испытательных машинах. Таких испытаний проводится много и самых различных, например испытания на твердость, сопротив­ляемость ударным и переменным нагрузкам, противодействие высоким температурам и т.д.

Испытания на растяжение

Наибольшую информацию о механических свойствах металлов можно получить из статических испытаний на растяжение. Испытания прово­дятся в соответствии с ГОСТ 1497—84.

Для испытания на растяжение применяют образцы специальной формы — цилиндрические или плоские (рис. 1).

Рис. 1

Образцы имеют рабочую часть с начальной длиной l0, на которой определяется удлине­ние, и головки с переходным участком, форма и размеры которых зависят от способов их крепления в захватах машины. Различают длинные образцы с отношением l0/d0 = 10 и короткие — l0/d0 = 5. Размеры образцов делают стандартными для того, чтобы результаты испытаний, полученные в разных лабораториях, были сравнимы.

Испытания проводят на разрывных или универсаль­ных машинах. В зависимости от метода приложения нагрузки машины бывают с механическим или гидрав­лическим приводом. Они обычно выпускаются с вертикальным расположением образа. Передача усилия на образец осуществляется через захваты. Для центральной передачи усилия на образец в машинах имеются специ­альные устройства. Все машины снабжены устройством для автоматической записи в определенном масштабе диаграммы растяжения, т. е. графика зависимости меж­ду растягивающей силой F и удлинением образца Δl.

В настоящее время начинают широко применяться испытательные машины нового поколения — универсальные машины с использованием современной микроэлектроники, которая позволяет полностью автоматизировать ход испытаний и управлять им, начиная от пуска машины до вывода полученных результатов измерений на дисплей и графопостроитель.

Испытания на сжатие

Для испытания металлов на сжатие применяется цилиндрические образцы с отноше­нием высоты к диаметру в пределах 1,5..,3, Применение более длинных образцов недопустимо, так гак такие об­разцы могут искривляться и тем самым искажать резуль­таты испытаний. Следует обратить внимание на некото­рую условность получаемых результатов из-за наличия сил трения в опорных поверхностях образца. Поэтому стараются ослабить влияние сил трения введением раз­личных смазок или приданием конусной формы торцевым поверхностям образца.

Испытание на сжатие осуществляется обычно при по­мощи тех же испытательных машин с применением спе­циальных приспособлений (реверсоров).

Диаграммы растяжения пластичных и хрупких материалов

Диаграмма низкоуглеродистой стали

Записанная с по­мощью специального устройства на испытательной машине диаграмма растяжения низкоуглеродистой стали изображена на рис. 2. Из этой группы сталей наиболь­шее применение для строительных конструкций находит сталь марки Ст3 и Ст3Гпс.

Читайте также:  Что такое растяжение связок правой стопы

Рис. 2

В начальной стадии нагружения до некоторой точки А диаграмма растяжения представляет собой наклонную прямую, что указывает на пропорциональность между нагрузкой и деформацией — справедливость закона Гука. Нагрузка, при которой эта пропорциональность еще не нарушается, на диаграмме обозначена через Fпци ис­пользуется для вычисления предела пропорциональности:

σпц = Fпц/А0

Пределом пропорциональности σпц называется наибольшее напряжение, до которого существует прямо пропор­циональная зависимость между нагрузкой и деформацией. Для Ст3 предел пропорциональности приблизительно ра­вен σпц = 195…200 МПа.

Зона ОА называется зоной упругости. Здесь возникают только упругие, очень незначительные деформации. Данные, характеризующие эту зону, позволяют определить значение модуля упругости Е.

После достижения предела пропорциональности деформации начинают расти быстрее, чем нагрузка, и диаграмма становится криволинейной. На этом участке в не­посредственной близости от точки А находится точка В, соответствующая пределу упругости.

Пределом упругости σуп называется максимальное на­пряжение, при котором в материале не обнаруживается признаков пластической (остаточной) деформации.

Предел упругости существует независимо от закона прямой пропорциональности. Он характеризует начало перехода от упругой деформации к пластической.

У большинства металлов значения предела пропорциональности и предела упругости незначительно отлича­ются друг от друга. Поэтому обычно считают, что они практически совпадают. Для стали Ст3 σуп = 205…210 МПа.

При дальнейшем нагружении криволинейная часть диаграммы переходят в почти горизонтальный участок CD площадку текучести. Здесь деформации растут практически без увеличения нагрузки. Нагрузка , соот­ветствующая точке D, используется при определении фи­зического предела текучести:

σт = Fт/А0

Физическим пределом текучести σт называется наименьшее напряжение, при котором образец деформируется без заметного увеличения растягивающей нагрузки. Для стали Сг3 σт =220…250 МПа.

Зона BD называется зоной общей текучести. В этой зоне значительно развиваются пластические деформации. При этом у образца повышается температура, изменяются электропроводность и магнитные свойства.

Образование пластической деформация в отдельных кристаллах образца происходит уже в начальной (упругой) стадии испытания. Однако эти деформации настоль­ко малы, что не обнаруживаются обычными приборами для измерения малых деформаций. С увеличением на­грузки пластическая деформация начинает накапливаться в микрообъемах образца, а с наступлением текучести эти очаги пластической деформации, сливаясь, захватывают уже макрообъемы образца металла. Необратимо деформированные области образца оказывают повышенное со­противление дальнейшему деформированию (материал упрочняется), и поэтому пластические деформации начи­нают развиваться в зонах, еще не подверженных этим деформациям. В дальнейшем пластическая деформация, переходя от одной зоны к другой, распространяется на весь объем рабочей части образца. Особенно наглядно фронт распространения пластической деформации вдоль образца можно наблюдать при испытании плоских полированных образцов. На поверхности таких образцов в момент возникновения очагов пластической деформа­ции появляются темные наклонные полосы, которые, как правило, с осью образца составляют углы, приблизитель­но равные 45° (линии Людерса — Чернова). Эти линии представляют собой микроскопические неровности, воз­никающие вследствие необратимых сдвигов, происходя­щих в кристаллах под действием наибольших касатель­ных напряжений.

Описанные явления вызывают изменение внутренней структуры металла, что приводит к его упрочнению. Диаграмма после зоны текучести снова становится криволинейной. Образец приобретает способность восприни­мать возрастающее усилие до значения Fmax — точка Е на диаграмме. Усилие Fmax используется для вычисления временного сопротивления:

σв = Fmax /А0

Напряжение, соответствующее наибольшей нагрузке, предшествующей разрушению образца, называется временным сопротивлением.

Для стали марки Ст3 временное сопротивление σв = 370…470 МПа.

Зона DE называется зоной упрочнения. Здесь удлинение образца происходит равномерно по всей его длине, первоначальная цилиндрическая форма образца сохраня­ется, а поперечные сечения изменяются незначительно и также равномерно.

При максимальном усилии или несколько меньшем его на образце в наиболее слабом месте возникает локальное уменьшение поперечного сечения — шейка (а иногда и две). Дальнейшая деформация происходят в этой зоне образца. Сечение в середине шейки продолжа­ет быстро уменьшаться, но напряжения в этом сечении все время растут, хотя растягивающее усилие и убывает. Вне области шейки напряжения уменьшаются, и поэтому удлинение остальной части образца не происходит. Наконец, в точке К образец разрушается. Сила, соответст­вующая точи К, называется разрушающей , а напря­жения — истинным сопротивлением разрыву (истинным пределом прочности), которые равны

SK=FK/AK,

где АK— площадь поперечного сечения в месте разрыва.

Зона ЕК называется зоной местной текучести. Истинные напряжения в момент разрыва (в шейке) в образце из стали Ст3 достигают 900…1000 МПа.

Заметим, что иногда временное сопротивление называют пределом прочности. Строго говоря, такое допусти­мо только в том случае, когда разрыв образца проис­ходит без образования шейки. Это имеет место с хрупкими материалами, например с чугуном. Тогда наиболь­шая нагрузка практически совпадает с моментом раз­рушения и предел прочности оказывается почти равным истинному напряжению при разрыве. У пластичных материалов, например у стали марки Ст3, наибольшее значение нагрузка не соответ­ствует ее значению при разрушении образца и за характеристику прочности (условную) принимается временное сопротивление.

Источник