Испытания материалов на растяжение сжатие при статическом нагружении

Испытания материалов на растяжение сжатие при статическом нагружении thumbnail

Конструктор, выбирая материал для проектируемой детали, а затем рассчитывая ее на прочность (жесткость, устойчивость), должен располагать данными о механических свойствах материала, т. е. его прочности, пластичности и т. п.

В связи с этим создано много различных видов испытаний, но основными и наиболее распространенными являются испытания на растяжение и сжатие. С их помощью удается получить наиболее важные характеристики материала, находящие прямое применение в расчетной практике.

Для испытания на растяжение используют специально изготовленные образцы (рис. 11), основной особенностью которых является наличие усиленных мест захвата и плавного перехода к сравнительно узкой ослабленной рабочей части. Начальную расчетную длину /0 образца принимают обычно раз в 10 большей диаметра d.

Рис. 11. Стандартный образец для испытаний на растяжение

Испытания на растяжение и сжатие проводят на специальных машинах, где усилие создают либо при помощи груза, действующего на образец через систему рычагов (рычажная машина), либо при помощи гидравлического давления, передаваемого на поршень (гидравлическая машина). Современные испытательные машины обычно снабжены прибором для автоматической записи диаграммы растяжения — сжатия. Это дает возможность сразу после испытаний получить вычерченную в определенном масштабе кривую F = / (At), которую называют диаграммой растяжения образца.

Рис. 12. Диаграмма растяжения образца

На рис. 12 показан примерный вид диаграммы растяжения, полученной при испытании образца из малоуглеродистой стали. На диаграмме точка 0 соответствует началу растяжения образца. В начальной стадии испытания (до точки А с ординатой F„4) зависимость между силой и удлинением линейна, т. е. справедлив закон Гука. При растягивающей силе Fy (т. В), почти не отличающейся от Fm, в образце возникают первые остаточные деформации. При некотором значении растягивающей силы FT наблюдается рост удлинения образца без увеличения нагрузки. Это явление называется текучестью металла. Соответствующий участок диаграммы (почти горизонтальная линия) называется площадкой текучести.

В этой стадии деформации полированная поверхность образца становится матовой и на ней можно обнаружить сетку линий, наклоненных к оси образца под углом примерно 45°. Это так называемые линии Людерса — Чернова, представляющие собой следы сдвигов частиц материала. Направление указанных линий соответствует площадкам, на которых при растяжении образца возникают наибольшие касательные напряжения.

По окончании стадии текучести материал вновь начинает сопротивляться деформации (т. L), здесь связь между силой и удлинением нелинейна: удлинение растет быстрее нагрузки. Этот участок диаграммы называют зоной упрочнения. При силе, примерно равной Fmax, на образце появляется местное утонь- шение — шейка (т. С), в результате сопротивление образца падает и его разрыв (т. D) происходит при силе, меньшей Fmax.

Пользоваться построенной диаграммой растяжения образца неудобно, так как она существенно зависит от размера поперечного сечения образца и длины выбранной измерительной базы /0. Для того чтобы исключить влияние этих факторов, диаграмму Д/ = /(F) перестраивают: все ординаты делят на начальную площадь поперечного сечения Аа, а все абсциссы — на начальную расчетную длину /а. В результате получают так называемую условную диаграмму растяжения материала

Рис. 13. Диаграмма растяжения пластичного материала

На диаграмме отмечены точки (и их ординаты), соответствующие механическим характеристикам, полученным при статических испытаниях на растяжение.

Предел пропорциональности — это наибольшее напряжение, до которог о материал следует закону Гука:

При дальнейшем увеличении нагрузки диаграмма становится криволинейной. Однако если напряжения не превосходят определенной величины — предела упругости оу, то материал сохраняет свои упругие свойства, при разгрузке образец восстанавливает свою первоначальную форму и размеры.

Предел упругости — это наибольшее напряжение, до достижения которого в образце возникают только упругие деформации:

Предел текучести — это напряжение, при котором проис ходит рост деформаций без заметного увеличения нагрузки:

При напряжениях, больших а„ в конструкции развиваются пластические деформации, которые не исчезают при снятии нагрузки.

Ряд материалов при растяжении дает диаграмму без выраженной площадки текучести; для них устанавливается так называемый условный предел текучести. Условным пределом текучести оь,2 называется напряжение, которому соответствует остаточная деформация, равная 0,2%.

Предел прочности, или временное сопротивление — это условное напряжение, соответствующее наибольшей нагрузке, выдерживаемой образцом до разрушения:

Напряжение, возникающее в образце в момент разрыва, называется истинным сопротивлением разрыву SK:

где FK и Ак — соответственно сила и площадь поперечного сечения образца в момент разрыва.

Кроме перечисленных выше механических характеристик материала, при испытании на растяжение определяют также характеристики пластичности, к которым относятся относительное остаточное удлинение и относительное остаточное сужение при разрыве.

Относительное остаточное удлинение при разрыве S определяется по формуле

где — длина рабочей части образца после разрушения; 10 — длина рабочей части образца до испытания.

Читайте также:  Как после растяжения мышц сесть на шпагат

Относительное остаточное сужение при разрыве Ч* является второй характеристикой пластичности:

где А0 — начальная площадь поперечного сечения образца; Ак — площадь поперечного сечения образца в месте разрыва.

Данные характеристики служат для оценки пластичности материала, чем они выше, тем материал пластичнее. Условно считают, что к пластичным могут быть отнесены материалы, для которых д > 5%. К числу пластичных материалов можно отнести медь, алюминий, латунь, малоуглеродистую сталь и др. Менее пластичными являются дюраль и бронза. К числу слабопластичных материалов относится большинство легированных сталей.

На рис. 14, а представлены диаграммы растяжения различных пластичных материалов. Как видим, некоторые пластичные материалы не имеют ярко выраженной площадки текучести.

Рис. 14. Диаграммы растяжения различных материалов: а) пластичные материалы; б) хрупкий материал

Противоположным свойству пластичности является свойство хрупкости, т. е. способность материала разрушаться при незначительных остаточных деформациях. Для таких материалов величина остаточного удлинения при разрыве не превышает 2-5%, а в ряде случаев измеряется долями процента. Типичные хрупкие материалы — серый чугун, высокоуглеродистая инструментальная сталь, камень и др. Хрупкие материалы дают иного рода диаграммы растяжения (см. рис. 14, б).

Такая диаграмма не имеет явно выраженного прямолинейного участка, т. е. прямой пропорциональности между напряжением и относительным удлинением не наблюдается. У хрупкого материала отсутствует явление текучести, и деформации упруги почти вплоть до разрушения. Следует отметить, что деление материалов на пластичные и хрупкие является условным, так как в зависимости от условий испытания (скорость нагружения, температура и т. п.) и вида напряженного состояния хрупкие материалы способны вести себя как пластичные, а пластичные — как хрупкие.

Остановимся дополнительно еще на некоторых вопросах, связанных со статическими испытаниями малоуглеродистой стали (и других пластичных материалов) на растяжение. Опытным путем установлено, что при разгрузке образца, растянутого так, что в нем возникают напряжения выше предела упругости и даже выше предела текучести (например, от точки N диаграммы на рис. 15), линия разгрузки оказывается прямой, параллельной начальному участку ОА диаграммы. Следовательно, полная деформация образца состоит из двух частей — упругой, исчезающей после снятия нагрузки, и остаточной (пластической).

Рис. 15. Закон упругой разгрузки

Полное удлинение, соответствующее нагрузке в точке N, выражается отрезком OL, упругое — отрезком ML и пластическое — отрезком ОМ оси абсцисс диаграммы (см. рис. 15).

Упругая деформация и при напряжениях, больших предела пропорциональности, может быть также определена по закону Гука. Это следует из того, что линия разгрузки — прямая. Параллельность этой линии начальному участку диаграммы указывает, что модуль упругости Е при разгрузке имеет то же значение, что и при нагружении в пределах справедливости закона Гука.

Если подвергнуть повторному нагружению образец, который был предварительно растянут до возникновения в нем напряжений, больших предела текучести, то оказывается, что линия нагрузки практически совпадает с линией разгрузки, а часть диаграммы, лежащая левее точки, от которой производилась разгрузка, не повторяется. Таким образом, в результате предварительной вытяжки материала за предел текучести его свойства изменяются: повышается предел пропорциональности и уменьшается пластичность. Это явление называется наклепом. В определенном смысле можно сказать, что в результате наклепа материал упрочняется.

Уменьшение пластичности материала при наклепе подтверждается следующим. Пластичность материала характеризуется значением относительного остаточного удлинения при разрыве S пропорционально отрезку OL оси абсцисс диаграммы (см. рис. 15), а при наклепе оно пропорционально меньшему отрезку ML. так как часть диаграммы, лежащая левее точки N, не повторяется.

Наклеп может быть также следствием холодной обработки металла. Например, при изготовлении клепаных конструкций отверстия для заклепок зачастую продавливают (пробивают) на специальных прессах. В результате материал у краев отверстия оказывается наклепанным, обладает повышенной хрупкостью и при действии переменных напряжений в этой зоне возможно появление трещин. Поэтому целесообразно пробивать отверстия меньшего диаметра, чем требуется, а затем рассверливать их до заданного размера. При этом наклепанная часть материала будет удалена.

В других случаях наклеп полезен и его создают специально. Например, провода, тросы, стержни для арматуры железобетонных конструкций зачастую подвергают предварительной вытяжке за предел текучести.

Изложенная выше методика испытаний и соответствующая ей терминология складывались постепенно и включали в себя результаты работ многих ученых. Окончательную форму они приняли в XIX в., когда основным конструкционным материалом была малоуглеродистая сталь. Диаграмма для этой стали с ее характерными точками и определила номенклатуру механических характеристик.

Диаграмма растяжения (см. рис. 13), имеющая явно выраженную площадку текучести, характерна лишь для малоуглеродистой стали и некоторых сплавов цветных металлов. Диаграмма растяжения некоторых пластичных металлов и сплавов, не имеющих площадки текучести, представлена на рис. 16.

Читайте также:  Как восстановить ногу после растяжения связок

Рис. 16. Диаграмма напряжения материала, не имеющего площадки текучести

Источник

1. Для создания современной конструкции необходимо рассчитать все её детали и узлы на прочность, жесткость, устойчивость. В расчетные формулы входят величины, зависящие от физико-механических характеристик материала деталей. Без знания механических свойств материалов невозможно сделать обоснованный выбор материалов рассчитываемой конструкции при определении ее размеров. Для определения этих характеристик проводятся испытания материалов в строгом соответствии с государственными стандартами. Стандарты [1 ¸ 5] определяют правила подготовки образцов, их форму и размеры, а стандарты [6 ¸24] – методики проведения испытаний.

Испытания на растяжение являются основным и наиболее распространенным методом лабораторного исследования и контроля механических свойств материалов.

Эти испытания проводятся и на производстве для установления марки поставленной заводом стали или для разрешения конфликтов при расследовании аварий.

Наиболее чувствительными и точными являются машины с рычажно-маятниковыми силоизмерениями. Они отличаются надежностью силоизмерения и простотой конструкции.

Универсальная испытательная машина УММ-5 с максимальным усилием нагружения 49 кН снабжена рычажно-маятниковым силоизмерителем. Внешний вид испытательной машины УММ-5 и кинематическая схема ее силоизмерительного устройства показаны на рис.1. Машина имеет пять скоростей нагружения, м/с: 3,33-10-5; 6,67-10-5; 1,67-10-4; 3,33-10-4; 8,33-10-4 и одну скорость холостого хода, равную 1,67-10-3 м/с. Максимальное расстояние между захватами равно 0,8 м. Погрешность измерений равна ± 1% от величины измеряемой нагрузки.

Для создания усилия растяжения вращение от электродвигателя передается через червячную передачу 1 на впрессованную в червячное колесо гайку, в которую вворачивается винт 2, связанный с нижним захватом 3. Это усилие через образец 4, верхний захват 5 и систему рычагов 6 уравновешивается весом груза 10, расположенного на конце маятника 7. Маятник связан зубчатой реечной передачей со шкалой нагрузки 8, а также с диаграммным устройством 9. Это устройство через систему зубчатых передач и зубчатую реечную передачу также связано с нижним захватом 3, что позволяет автоматически записывать диаграмму растяжения – график зависимости абсолютного удлинения ∆ℓ от усилия растяжения F.

2) Диаграммы растяжения : машинная диаграмма растяжений и условная диаграмма растяжений

Точка А (1) соответствует пределу пропорциональности: после нее прямая линия ( прямая пропорциональность) заканчивается и переходит в кривую, т.е. участок диаграммы ОА –удлинение растет пропорционально нагрузке, подтверждается закон Гука

Точка В (2) соответствует пределу упругости материала: материал теряет упругие свойства-способность вернуться к исходным размерам

Точка С (3) является концом участка,на котором образец сильно деформируется без увеличения нагрузки.Это явление называют текучестью, т.е. текучесть – удлинение при постоянной нагрузке

Точка Е (4) соответствует максимальной нагрузке, в этот момент на образце образуется « шейка»-резкое уменьшение площади поперечного сечения. Напряжения в этой точке называют временным сопротивлением разрыву или условным пределом прочности. Участок СЕ-участок упрочнения

Точка К (5)- наступает разрушение образца .

Первая диаграмма связана не только со свойствами материала , но и с размерами испытуемого образца. Чтобы получить характеристики свойств материала, исключают влияние на диаграмму размеров образца, для этого диаграмму перестраивают: делят нагрузки F на начальную площадь А0 поперечного сечения образца, а абсолютные удлинения Δ l на начальную длину l0. Диаграмму, построенную в координатах σ-ε, называют диаграммой растяжения материала или условной диаграммой напряжений. По данной диаграмме определяются механические характеристики материала. Отличаются диаграммы масштабом.

3).Основные характеристики прочности (механические характеристики):

Механические характеристики-это числовые характеристики позволяющие оценивать свойства

σпц-предел пропорциональности, наибольшее напряжение, до которого выполняется закон Гука

σпц=F1/А0

σу- предел упругости, наибольшее напряжение , до которого в материале не возникают остаточные деформации

σу= F2/А0

σт-предел текучести, наименьшее напряжение при котором деформация увеличивается без заметного увеличения нагрузки

σт= F3/А0

σв- предел прочности или временное сопртивление, напряжение, соответствующее

максимальной нагрузке, предшествующей разрушению образца

σв= Fмах/А0

4.Виды диаграмм растяжения

Различные материалы по-разному ведут себя под нагрузкой, характер деформаций и разрушения зависит от свойств материала.

По типу диаграмм растяжения материалы делят на три группы:

1. Пластичные материалы имеют площадку текучести на диаграмме

2. Хрупкие материалы, мало деформируются, разрушаются по хрупкому типу, на диаграмме нет площадки текучести

3. Пластично-хрупкие, не имеющие площадки текучести, но значительно деформирующиеся под нагрузкой. Их деформацию обычно ограничивают. Максимально возможная относительная деформация ε=0,2%. По величине максимально возможной деформации определяется соответствующее нормальное напряжение σ0,2, которое принимают за предельное

5) При проектировании элементов конструкций выбирают материал и определяют размеры элемента, надежно обеспечивающие его прочность.

Напряжения, при которых нарушается прочность элемента, называют предельными. Нарушением прочности считают не только разрушение элемента конструкции, но и появление хотя бы в одной зоне (точке) остаточных деформаций.

Заметные остаточные деформации в пластичных материалах появляются при напряжениях равных пределу текучести, отсюда следует, что для пластичных материалов предел текучести является предельным напряжением.

Читайте также:  Чем мазать после растяжения

Хрупкие материалы разрушаются при малых пластических деформациях и для них предельным напряжением считают предел прочности

Источник

Основные механические характеристики материалов получают в результате специальных лабораторных исследований на испытательных машинах при нагружении стержней на растяжение и сжатие. Вид стержневых образцов и сами методы испытаний регламентированы государственными стандартами.

Большинство механических свойств материалов определяется в результате испытаний образцов в условиях именно одноосного растяжения. В процессе эксперимента ведётся запись диаграммы испытаний – графика зависимости деформации (удлинения) образца от растягивающей силы F = f(∆l). Этот график называется диаграммой растяжения или сжатия образца. Поскольку исследуется не конкретный образец, а материал, то принято по результатам испытаний ряда образцов строить диаграмму растяжения для материала образца в относительных величинах. С этой целью силу относят к первоначальной площади сечения образца, а абсолютное удлинение – к первоначальной его длине . Получают диаграмму зависимости для материала образца. Эта диаграмма называется условной диаграммой растяжения.

Рассмотрим типичную условную диаграмму растяжения, характерную для образцов из малоуглеродистых сталей, полученную при нормальной температуре и стандартных скоростях деформирования при нагружении (рис. 8).

Рассмотрим характерные точки и участки диаграммы. Точка А – конец прямолинейного участка. Участок О–А называется участком пропорциональной (прямолинейной) зависимости между нормальным напряжением и относительным удлинением, что отражает закон Гука ( ). Точка А соответствует пределу пропорциональности:

, (2.13)

где – нагрузка, соответствующая пределу пропорциональности;

– первоначальная площадь сечения образца.

Несколько выше точки А находится точка В, соответствующая пределу упругости , наибольшему напряжению, при котором ещё нет остаточных деформаций:

, (2.14)

где – нагрузка, соответствующая пределу упругости.

Относительная деформация, соответствующая пределу упругости (весьма близкая к пределу пропорциональности), для малоуглеродистой стали примерно достигает 0,05 %.

За точкой В возникают заметные остаточные деформации. В точке С диаграммы материал переходит в область пластичности – наступает явление текучести материала. Участок СD параллелен оси абсцисс (площадка текучести). Для данной площадки характерен рост деформации при постоянном напряжении. Напряжение, соответствующее участку CD, называется пределом текучести:

, (2.15)

где – нагрузка, соответствующая пределу текучести.

Большинство материалов не имеют явно выраженной площадки текучести, поэтому определяют условной предел текучести по величине остаточной деформации. Условным пределом текучести принято считать такое напряжение, при котором остаточная деформация , или когда . Условный предел текучести при растяжении обозначается , а при сжатии – .

Участок DMучасток упрочнения, на котором отмечается новый, но более медленный, чем на первом участке, рост нагрузки. В конце этого участка на образце начинает образовываться шейка − местное сужение образца, место будущего разрыва, а растягивающая сила F достигает максимального значения . Напряжение, соответствующее точке M, называется пределом прочности или временным сопротивлением:

. (2.16)

Участок MKучасток разрушения, на котором удлинение всего образца уже происходит за счёт местной деформации в зоне шейки, площадь которой существенно уменьшается. Поэтому для разрушения требуется меньшее усилие (динамометр показывает уменьшение силы F, хотя захваты испытательной машины продолжают раздвигаться с той же скоростью). Деформации при разрушении малоуглеродистых сталей достигают 20 % и более. Однако многие материалы разрушаются без заметного образования шейки. В точке К происходит разрыв образца при разрушающей нагрузке .

Явление наклепа. Если при испытаниях остановить испытательную машину, когда образец нагружен за пределами участка текучести, например в т. N, (рис. 8), и разгрузить его, то график разгрузки NL пойдёт параллельно участку упругости ОА. Накопленная (в т. N) абсолютная деформация при разгрузке полностью не исчезнет. Останется в образце пластическая деформация ∆lпл – отрезок OL (рис. 8). Повторное нагружение образца пойдёт по тому же участку LN, т. е. увеличится область упругих деформаций (LN > ОА). Эта способность материалов повышать сопротивление деформации широко используется в технике для упрочнения деталей.

В качестве характеристик пластичности используются относительное остаточное удлинение δ (%) и относительное остаточное сужение ψk (%):

, (2.17)

где l0, А0 – первоначальная длина и площадь образца;

l, – длина и площадь шейки образца после разрушения (соединяются разрушенные части образца, и проводится измерение геометрических параметров).

Чем больше параметры δ и ψ, тем пластичность материала считается выше. Тангенс угла наклона участков ОА, LN диаграммы растяжения и будет модулем упругости материала (первого рода), или модулем Юнга: (рис. 8).

Хрупкие материалы (чугун, бетон, инструментальная сталь и др.) разрушаются без появления заметных остаточных деформаций (δ < 5 %), их диаграммы деформирования не имеют площадки текучести и участка упрочнения.

Источник