Испытание материалов при растяжении и сжатии

Конструктор, выбирая материал для проектируемой детали, а затем рассчитывая ее на прочность (жесткость, устойчивость), должен располагать данными о механических свойствах материала, т. е. его прочности, пластичности и т. п.

В связи с этим создано много различных видов испытаний, но основными и наиболее распространенными являются испытания на растяжение и сжатие. С их помощью удается получить наиболее важные характеристики материала, находящие прямое применение в расчетной практике.

Для испытания на растяжение используют специально изготовленные образцы (рис. 11), основной особенностью которых является наличие усиленных мест захвата и плавного перехода к сравнительно узкой ослабленной рабочей части. Начальную расчетную длину /0 образца принимают обычно раз в 10 большей диаметра d.

Стандартный образец для испытаний на растяжение

Рис. 11. Стандартный образец для испытаний на растяжение

Испытания на растяжение и сжатие проводят на специальных машинах, где усилие создают либо при помощи груза, действующего на образец через систему рычагов (рычажная машина), либо при помощи гидравлического давления, передаваемого на поршень (гидравлическая машина). Современные испытательные машины обычно снабжены прибором для автоматической записи диаграммы растяжения — сжатия. Это дает возможность сразу после испытаний получить вычерченную в определенном масштабе кривую F = / (At), которую называют диаграммой растяжения образца.

Диаграмма растяжения образца

Рис. 12. Диаграмма растяжения образца

На рис. 12 показан примерный вид диаграммы растяжения, полученной при испытании образца из малоуглеродистой стали. На диаграмме точка 0 соответствует началу растяжения образца. В начальной стадии испытания (до точки А с ординатой F„4) зависимость между силой и удлинением линейна, т. е. справедлив закон Гука. При растягивающей силе Fy (т. В), почти не отличающейся от Fm, в образце возникают первые остаточные деформации. При некотором значении растягивающей силы FT наблюдается рост удлинения образца без увеличения нагрузки. Это явление называется текучестью металла. Соответствующий участок диаграммы (почти горизонтальная линия) называется площадкой текучести.

В этой стадии деформации полированная поверхность образца становится матовой и на ней можно обнаружить сетку линий, наклоненных к оси образца под углом примерно 45°. Это так называемые линии Людерса — Чернова, представляющие собой следы сдвигов частиц материала. Направление указанных линий соответствует площадкам, на которых при растяжении образца возникают наибольшие касательные напряжения.

По окончании стадии текучести материал вновь начинает сопротивляться деформации (т. L), здесь связь между силой и удлинением нелинейна: удлинение растет быстрее нагрузки. Этот участок диаграммы называют зоной упрочнения. При силе, примерно равной Fmax, на образце появляется местное утонь- шение — шейка (т. С), в результате сопротивление образца падает и его разрыв (т. D) происходит при силе, меньшей Fmax.

Пользоваться построенной диаграммой растяжения образца неудобно, так как она существенно зависит от размера поперечного сечения образца и длины выбранной измерительной базы /0. Для того чтобы исключить влияние этих факторов, диаграмму Д/ = /(F) перестраивают: все ординаты делят на начальную площадь поперечного сечения Аа, а все абсциссы — на начальную расчетную длину /а. В результате получают так называемую условную диаграмму растяжения материала

Диаграмма растяжения пластичного материала

Рис. 13. Диаграмма растяжения пластичного материала

На диаграмме отмечены точки (и их ординаты), соответствующие механическим характеристикам, полученным при статических испытаниях на растяжение.

Предел пропорциональности — это наибольшее напряжение, до которог о материал следует закону Гука:

Испытание материалов при растяжении и сжатии

При дальнейшем увеличении нагрузки диаграмма становится криволинейной. Однако если напряжения не превосходят определенной величины — предела упругости оу, то материал сохраняет свои упругие свойства, при разгрузке образец восстанавливает свою первоначальную форму и размеры.

Предел упругости — это наибольшее напряжение, до достижения которого в образце возникают только упругие деформации:

Испытание материалов при растяжении и сжатии

Предел текучести — это напряжение, при котором проис ходит рост деформаций без заметного увеличения нагрузки:

Испытание материалов при растяжении и сжатии

При напряжениях, больших а„ в конструкции развиваются пластические деформации, которые не исчезают при снятии нагрузки.

Ряд материалов при растяжении дает диаграмму без выраженной площадки текучести; для них устанавливается так называемый условный предел текучести. Условным пределом текучести оь,2 называется напряжение, которому соответствует остаточная деформация, равная 0,2%.

Предел прочности, или временное сопротивление — это условное напряжение, соответствующее наибольшей нагрузке, выдерживаемой образцом до разрушения:

Испытание материалов при растяжении и сжатии

Напряжение, возникающее в образце в момент разрыва, называется истинным сопротивлением разрыву SK:

Испытание материалов при растяжении и сжатии

где FK и Ак — соответственно сила и площадь поперечного сечения образца в момент разрыва.

Кроме перечисленных выше механических характеристик материала, при испытании на растяжение определяют также характеристики пластичности, к которым относятся относительное остаточное удлинение и относительное остаточное сужение при разрыве.

Относительное остаточное удлинение при разрыве S определяется по формуле

Испытание материалов при растяжении и сжатии

где — длина рабочей части образца после разрушения; 10 — длина рабочей части образца до испытания.

Относительное остаточное сужение при разрыве Ч* является второй характеристикой пластичности:

Испытание материалов при растяжении и сжатии

где А0 — начальная площадь поперечного сечения образца; Ак — площадь поперечного сечения образца в месте разрыва.

Данные характеристики служат для оценки пластичности материала, чем они выше, тем материал пластичнее. Условно считают, что к пластичным могут быть отнесены материалы, для которых д > 5%. К числу пластичных материалов можно отнести медь, алюминий, латунь, малоуглеродистую сталь и др. Менее пластичными являются дюраль и бронза. К числу слабопластичных материалов относится большинство легированных сталей.

На рис. 14, а представлены диаграммы растяжения различных пластичных материалов. Как видим, некоторые пластичные материалы не имеют ярко выраженной площадки текучести.

Диаграммы растяжения различных материалов

Рис. 14. Диаграммы растяжения различных материалов: а) пластичные материалы; б) хрупкий материал

Противоположным свойству пластичности является свойство хрупкости, т. е. способность материала разрушаться при незначительных остаточных деформациях. Для таких материалов величина остаточного удлинения при разрыве не превышает 2-5%, а в ряде случаев измеряется долями процента. Типичные хрупкие материалы — серый чугун, высокоуглеродистая инструментальная сталь, камень и др. Хрупкие материалы дают иного рода диаграммы растяжения (см. рис. 14, б).

Читайте также:  Растяжение связок плеча сроки

Такая диаграмма не имеет явно выраженного прямолинейного участка, т. е. прямой пропорциональности между напряжением и относительным удлинением не наблюдается. У хрупкого материала отсутствует явление текучести, и деформации упруги почти вплоть до разрушения. Следует отметить, что деление материалов на пластичные и хрупкие является условным, так как в зависимости от условий испытания (скорость нагружения, температура и т. п.) и вида напряженного состояния хрупкие материалы способны вести себя как пластичные, а пластичные — как хрупкие.

Остановимся дополнительно еще на некоторых вопросах, связанных со статическими испытаниями малоуглеродистой стали (и других пластичных материалов) на растяжение. Опытным путем установлено, что при разгрузке образца, растянутого так, что в нем возникают напряжения выше предела упругости и даже выше предела текучести (например, от точки N диаграммы на рис. 15), линия разгрузки оказывается прямой, параллельной начальному участку ОА диаграммы. Следовательно, полная деформация образца состоит из двух частей — упругой, исчезающей после снятия нагрузки, и остаточной (пластической).

Закон упругой разгрузки

Рис. 15. Закон упругой разгрузки

Полное удлинение, соответствующее нагрузке в точке N, выражается отрезком OL, упругое — отрезком ML и пластическое — отрезком ОМ оси абсцисс диаграммы (см. рис. 15).

Упругая деформация и при напряжениях, больших предела пропорциональности, может быть также определена по закону Гука. Это следует из того, что линия разгрузки — прямая. Параллельность этой линии начальному участку диаграммы указывает, что модуль упругости Е при разгрузке имеет то же значение, что и при нагружении в пределах справедливости закона Гука.

Если подвергнуть повторному нагружению образец, который был предварительно растянут до возникновения в нем напряжений, больших предела текучести, то оказывается, что линия нагрузки практически совпадает с линией разгрузки, а часть диаграммы, лежащая левее точки, от которой производилась разгрузка, не повторяется. Таким образом, в результате предварительной вытяжки материала за предел текучести его свойства изменяются: повышается предел пропорциональности и уменьшается пластичность. Это явление называется наклепом. В определенном смысле можно сказать, что в результате наклепа материал упрочняется.

Уменьшение пластичности материала при наклепе подтверждается следующим. Пластичность материала характеризуется значением относительного остаточного удлинения при разрыве S пропорционально отрезку OL оси абсцисс диаграммы (см. рис. 15), а при наклепе оно пропорционально меньшему отрезку ML. так как часть диаграммы, лежащая левее точки N, не повторяется.

Наклеп может быть также следствием холодной обработки металла. Например, при изготовлении клепаных конструкций отверстия для заклепок зачастую продавливают (пробивают) на специальных прессах. В результате материал у краев отверстия оказывается наклепанным, обладает повышенной хрупкостью и при действии переменных напряжений в этой зоне возможно появление трещин. Поэтому целесообразно пробивать отверстия меньшего диаметра, чем требуется, а затем рассверливать их до заданного размера. При этом наклепанная часть материала будет удалена.

В других случаях наклеп полезен и его создают специально. Например, провода, тросы, стержни для арматуры железобетонных конструкций зачастую подвергают предварительной вытяжке за предел текучести.

Изложенная выше методика испытаний и соответствующая ей терминология складывались постепенно и включали в себя результаты работ многих ученых. Окончательную форму они приняли в XIX в., когда основным конструкционным материалом была малоуглеродистая сталь. Диаграмма для этой стали с ее характерными точками и определила номенклатуру механических характеристик.

Диаграмма растяжения (см. рис. 13), имеющая явно выраженную площадку текучести, характерна лишь для малоуглеродистой стали и некоторых сплавов цветных металлов. Диаграмма растяжения некоторых пластичных металлов и сплавов, не имеющих площадки текучести, представлена на рис. 16.

Диаграмма напряжения материала, не имеющего площадки текучести

Рис. 16. Диаграмма напряжения материала, не имеющего площадки текучести

Источник

Основные механические характеристики материалов получают в результате специальных лабораторных исследований на испытательных машинах при нагружении стержней на растяжение и сжатие. Вид стержневых образцов и сами методы испытаний регламентированы государственными стандартами.

Большинство механических свойств материалов определяется в результате испытаний образцов в условиях именно одноосного растяжения. В процессе эксперимента ведётся запись диаграммы испытаний – графика зависимости деформации (удлинения) образца от растягивающей силы F = f(∆l). Этот график называется диаграммой растяжения или сжатия образца. Поскольку исследуется не конкретный образец, а материал, то принято по результатам испытаний ряда образцов строить диаграмму растяжения для материала образца в относительных величинах. С этой целью силу относят к первоначальной площади сечения образца, а абсолютное удлинение – к первоначальной его длине . Получают диаграмму зависимости для материала образца. Эта диаграмма называется условной диаграммой растяжения.

Рассмотрим типичную условную диаграмму растяжения, характерную для образцов из малоуглеродистых сталей, полученную при нормальной температуре и стандартных скоростях деформирования при нагружении (рис. 8).

Рассмотрим характерные точки и участки диаграммы. Точка А – конец прямолинейного участка. Участок О–А называется участком пропорциональной (прямолинейной) зависимости между нормальным напряжением и относительным удлинением, что отражает закон Гука ( ). Точка А соответствует пределу пропорциональности:

, (2.13)

где – нагрузка, соответствующая пределу пропорциональности;

– первоначальная площадь сечения образца.

Несколько выше точки А находится точка В, соответствующая пределу упругости , наибольшему напряжению, при котором ещё нет остаточных деформаций:

, (2.14)

где – нагрузка, соответствующая пределу упругости.

Относительная деформация, соответствующая пределу упругости (весьма близкая к пределу пропорциональности), для малоуглеродистой стали примерно достигает 0,05 %.

За точкой В возникают заметные остаточные деформации. В точке С диаграммы материал переходит в область пластичности – наступает явление текучести материала. Участок СD параллелен оси абсцисс (площадка текучести). Для данной площадки характерен рост деформации при постоянном напряжении. Напряжение, соответствующее участку CD, называется пределом текучести:

Читайте также:  Как вы лечили растяжения поясницы

, (2.15)

где – нагрузка, соответствующая пределу текучести.

Большинство материалов не имеют явно выраженной площадки текучести, поэтому определяют условной предел текучести по величине остаточной деформации. Условным пределом текучести принято считать такое напряжение, при котором остаточная деформация , или когда . Условный предел текучести при растяжении обозначается , а при сжатии – .

Участок DMучасток упрочнения, на котором отмечается новый, но более медленный, чем на первом участке, рост нагрузки. В конце этого участка на образце начинает образовываться шейка − местное сужение образца, место будущего разрыва, а растягивающая сила F достигает максимального значения . Напряжение, соответствующее точке M, называется пределом прочности или временным сопротивлением:

. (2.16)

Участок MKучасток разрушения, на котором удлинение всего образца уже происходит за счёт местной деформации в зоне шейки, площадь которой существенно уменьшается. Поэтому для разрушения требуется меньшее усилие (динамометр показывает уменьшение силы F, хотя захваты испытательной машины продолжают раздвигаться с той же скоростью). Деформации при разрушении малоуглеродистых сталей достигают 20 % и более. Однако многие материалы разрушаются без заметного образования шейки. В точке К происходит разрыв образца при разрушающей нагрузке .

Явление наклепа. Если при испытаниях остановить испытательную машину, когда образец нагружен за пределами участка текучести, например в т. N, (рис. 8), и разгрузить его, то график разгрузки NL пойдёт параллельно участку упругости ОА. Накопленная (в т. N) абсолютная деформация при разгрузке полностью не исчезнет. Останется в образце пластическая деформация ∆lпл – отрезок OL (рис. 8). Повторное нагружение образца пойдёт по тому же участку LN, т. е. увеличится область упругих деформаций (LN > ОА). Эта способность материалов повышать сопротивление деформации широко используется в технике для упрочнения деталей.

В качестве характеристик пластичности используются относительное остаточное удлинение δ (%) и относительное остаточное сужение ψk (%):

, (2.17)

где l0, А0 – первоначальная длина и площадь образца;

l, – длина и площадь шейки образца после разрушения (соединяются разрушенные части образца, и проводится измерение геометрических параметров).

Чем больше параметры δ и ψ, тем пластичность материала считается выше. Тангенс угла наклона участков ОА, LN диаграммы растяжения и будет модулем упругости материала (первого рода), или модулем Юнга: (рис. 8).

Хрупкие материалы (чугун, бетон, инструментальная сталь и др.) разрушаются без появления заметных остаточных деформаций (δ < 5 %), их диаграммы деформирования не имеют площадки текучести и участка упрочнения.

Источник

Испытание на растяжение

Испытание на растяжение производится на образцах двух типов:
цилиндрических и плоских.

Испытание материалов при растяжении и сжатии

Испытание материалов при растяжении и сжатии

Цилиндрические образцы могут быть нормальные (с расчетной
длиной lрасч=10d) и
укороченные (с lрасч=5d).
Для плоских образцов при вычислении расчетной длины образца используется
диаметр круга, равновеликого поперечному сечению рабочей части образца.

В процессе растяжения, реализуемого на специальных
испытательных машинах, автоматически записывается диаграмма испытания в
координатах сила – удлинение (рабочая, или индикаторная диаграмма). Для
малоуглеродистой стали эта диаграмма выглядит следующим образом:

Испытание материалов при растяжении и сжатии

Рассмотрим основные участки диаграммы.

OB – участок упругости.

После нагружения в пределах этого участка образец
возвращается в исходное состояние. Такая деформация, полностью исчезающая после
разгрузки, называется упругой. Механизм упругой деформации – изменение
расстояния между атомами.

BC – участок общей текучести (площадка текучести).

На этом участке на поверхности образца появляется сетка линий,
направленных под углом приблизительно 45° к оси растяжения – линии
Чернова-Людерса. Эти линии свидетельствуют о появлении нового механизма
деформации, заключающегося в сдвиге атомных слоев друг относительно друга.
Из-за этих сдвигов после разгрузки образец не возвращается в исходное
состояние, приобретая остаточную, или пластическую, деформацию. Пластическая
деформация сопровождается нагревом образца, изменением его электропроводности и
магнитных свойств, а также акустическим излучением.

CD – участок упрочнения.

Пластическая деформация изменяет внутреннюю структуру
материала, в результате чего образец снова проявляет сопротивление
деформированию, и растягивающая сила повышается.

DK – участок местной текучести.

Точка D диаграммы соответствует появлению на образце
локального сужения – шейки. Дальнейшая деформация локализуется в этой области,
и за счет уменьшения площади поперечного сечения необходимая для растяжения
сила снижается. Точка K соответствует разделению образца на части. Разрыв
происходит в самом тонком месте шейки.

Чтобы исключить влияние геометрических размеров образца,
рабочая диаграмма перестраивается в условную (в координатах напряжение –
деформация:

Испытание материалов при растяжении и сжатии

Полученная диаграмма называется условной потому, что при
вычислении напряжения и деформации сила и удлинение относятся не к
действительным, а к начальным значениям соответственно площади поперечного
сечения и длины образца.

На условной диаграмме выделяют следующие характерные точки:

sпц
– предел пропорциональности: максимальное напряжение, до которого справедлив
закон Гука (т.е. наблюдается прямая пропорциональная зависимость между
напряжением и деформацией);


– предел упругости: максимальное напряжение, до которого в материале не
возникает пластических деформаций;


– предел текучести: напряжение, при котором наблюдается рост деформации при
постоянном напряжении;


– предел прочности (или временное сопротивление разрыву): максимальное
напряжение, которое может выдержать образец без разрушения.

В момент разрыва истинное напряжение, отнесенное к
действительной площади сечения, существенно выше предела прочности.

За пределами участка упругости в любой точке диаграммы
полная деформация εполн состоит из упругой εупр
и пластической εпл составляющих:

Читайте также:  Детям крем от растяжении

Испытание материалов при растяжении и сжатии

Если прекратить нагружение в точке G и снять нагрузку, то
разгрузка произойдет по закону Гука, т.е. по линии, параллельной участку
упругости (отрезок GO1). Таким образом, отрезок OO1
определяет величину остаточной деформации образца, а отрезок O1O2 – величину
упругой деформации на момент разрыва.

Механические характеристики материалов

Механические характеристики материалов, определяемые при
растяжении, можно разделить на три группы.

1. Характеристики упругих свойств.

Модуль упругости первого рода (модуль Юнга).

Модуль Юнга характеризует жесткость материала (физический
смысл) и равен тангенсу угла наклона участка упругости OB условной диаграммы к
оси абсцисс E = tga
(геометрический смысл). Для основных марок стали E = 2·105 МПа, для
меди E = 1,2·105 МПа, для алюминия E = 0,7·105 МПа.

Коэффициент Пуассона.

Удлинению стержня при растяжении в продольном направлении
сопутствует сжатие в поперечном направлении:

Испытание материалов при растяжении и сжатии

При этом относительная линейная деформация определяется как

,

а относительная поперечная
деформация –

.

За коэффициент Пуассона принимают модуль отношения
поперечной деформации к продольной:

.

Коэффициент Пуассона изменяется от 0 (для пробки) до 0,5
(для резины). Для основных марок стали .

Иногда к характеристикам упругости относят также предел
пропорциональности sпц и
предел упругости sу.

2. Характеристики прочности:

– предел текучести sт,

– предел прочности sв.

Если диаграмма растяжения не имеет площадки текучести, то
определяют условный предел текучести s0,2
– напряжение, соответствующее величине остаточной деформации 0,2%.

Испытание материалов при растяжении и сжатии

Для некоторых материалов величину условного предела
текучести определяют при остаточной деформации 0,5% (s0,5). Используется также понятие условного предела
упругости s0,001 или s0,005 – напряжение,
соответствующее величине остаточной деформации 0,001 или 0,005%.

3. Характеристики пластичности.

Относительное остаточное удлинение при разрыве:

,

где l0 – начальная
длина образца (до испытания), – конечная длина образца
(после разрушения).

Относительное остаточное удлинение при разрыве можно
определить непосредственно по диаграмме растяжения, проведя из точки разрыва
линию, параллельную участку упругости, до пересечения с осью абсцисс (отрезок
OL):

Испытание материалов при растяжении и сжатии

Относительное остаточное сужение при разрыве:

,

где A0 и Aш –
площадь поперечного сечения рабочей части соответственно до и после испытания
(в месте образования шейки).

Испытание на сжатие

При испытании на сжатие металлов используются цилиндрические
образцы с отношением высоты к диаметру 1…3:

Испытание материалов при растяжении и сжатии

Для строительных материалов используются кубические образцы
с длиной грани 100 или 150 мм.

Испытание материалов при растяжении и сжатии

Испытание на сжатие используется редко в силу того, что
между плитами испытательной машины и торцевыми поверхностями образца возникает
сила трения, нарушающая одноосное напряженно-деформированное состояние, в
результате чего определяемые характеристики прочности не могут использоваться в
расчетах на прочность. Для устранения силы трения используются следующие
приемы:

  • нанесение парафинового слоя на
    торцевые поверхности образца;
  • использование плиты
    специальной конструкции.

Испытание материалов при растяжении и сжатии

Угол конуса рассчитывают таким, чтобы расклинивающая сила
компенсировала силу трения.

Пластичные и хрупкие материалы

По величине относительного остаточного удлинения при разрыве
принято различать:

пластичные материалы – способные получать без
разрушения большие остаточные деформации (d > 10%);

хрупкие материалы – способные разрушаться без
образования заметных остаточных деформаций (d < 5%).

При испытаниях на растяжение:

Испытание материалов при растяжении и сжатии

1 –
пластичный материал;

2 –
хрупкий материал.

Пластичные и хрупкие материалы отличаются также по характеру
разрушения. Пластичные материалы перед разрывом образуют заметную шейку, а
разрушение происходит под углом примерно 45° к оси растяжения (последнее хорошо
видно на плоских образцах). Хрупкие материалы разрушаются по плоскости,
нормальной оси растяжения, практически без образования шейки.

Сравним результаты испытаний на растяжение и сжатие для
пластичных материалов:

1 –
растяжение;

2 –
сжатие.

Считается, что для пластичных материалов пределы текучести
при растяжении и сжатии равны друг другу: sтр»sтс.

Другой особенностью испытания на сжатие пластичных
материалов является то, что их не удается довести до разрушения, т.к. они
сплющиваются в тонкий диск. По этим причинам пластичные материалы на сжатие
практически не испытывают.

Для хрупких материалов диаграммы испытаний на растяжение и
сжатие подобны друг другу:

1 –
растяжение;

2 –
сжатие.

Хрупкие материалы при испытании на сжатие разрушаются, при
этом оказывается, что предел прочности при растяжении меньше, чем при сжатии: sвр<sвс.

Существует также группа материалов, которые способны при
растяжении воспринимать большие нагрузки, чем при сжатии. Это в основном
волокнистые материалы, а из металлов – магний.

Для волокнистых материалов характерна анизотропия
механических свойств. Например, при испытаниях на сжатие дерева:

1 –
дерево вдоль волокон;

2 –
дерево поперек волокон.

Наклеп. Эффект Баушингера. Гистерезис

Если нагрузить образец до точки G, а затем произвести
разгрузку, то при повторном нагружении диаграмма растяжения пойдет по пути O1GK:

Испытание материалов при растяжении и сжатии

Явление повышения прочностных свойств материала (sпц, sу и sт)
и снижения пластических (d) в
результате предварительного нагружения выше предела текучести называется
наклепом (или деформационным упрочнением). Если после такого нагружения
выдержать образец в течение 100 и более часов, то при этом повышается и предел
прочности. Это явление называется естественным старением.

Наклеп может быть частично или полностью устранен
термической обработкой.

При сжатии нагружение выше предела текучести, так же, как и
при растяжении, вызывает явление наклепа. Однако наклеп, вызванный растяжением,
снижает sпц и sт при сжатии. Это явление
называется эффектом Баушингера.

Если рассмотреть диаграмму растяжения при большом разрешении
по оси деформаций, то станет заметно, что линии разгрузки GO1 и
нагрузки O1G образуют петлю – петлю гистерезиса:

Испытание материалов при растяжении и сжатии

Явление гистерезиса можно определить как необратимую потерю
энергии деформации в результате несовпадения кривой нагружения с кривой
разгрузки. При свободных колебаниях гистерезис является причиной постепенного
затухания колебательного процесса.

При анализе диаграмм растяжения и сжатия явлением
гистерезиса пренебрегают.

Источник