Гипотезы при растяжении сжатии
1. Принцип Сен-Венана – равномерное распределение упругих сил во всех поперечных сечениях. И только в сечениях, расположенных очень близко к местам приложения сил нельзя ожидать равномерного распределения сил упругости. Определение сил упругости в местах, лежащих близко к месту приложения внешних сил, представляет трудную задачу, не входящую в курс сопротивления материалов.
2. Гипотеза Я.Бернулли – сечения бруса, плоские и нормальные к его оси до деформации, остаются плоскими и нормальными к оси и при деформации.
Продольная сила в произвольном поперечном сечении бруса численно равна алгебраической сумме проекций на его продольную ось OZ всех внешних сил, приложенных к оставленной части.
В тех случаях, когда продольные силы в различных поперечных сечениях неодинаковы, закон их изменения по длине бруса удобно представить в виде графика, называемого эпюрой продольных сил N=f(z).
Обозначим полученное удлинение Δl, его величина будет:
Δl=l – lo (мм)
Это приращение длины бруса называется полным или абсолютным удлинением при растяжении, а в случае сжатия бруса оно называется полным или абсолютным укорочением.
Абсолютное удлинение (укорочение) очевидно, зависит от первоначальной длины бруса, поэтому более удобной мерой деформации является удлинение (укорочение), отнесенное к первоначальной длине бруса.
Отношение
называется относительной продольной деформацией или относительным удлинением (укорочением).
Относительное удлинение (укорочение) не имеет размерности и выражается в процентах от первоначальной длины:
Нормальное напряжение, возникающее в поперечном сечении бруса, выразим через продольную силу и площадь сечения:
Единица измерения или МПа – мегапаскаль.
Нагрузки и деформации, возникающие в брусе, тесно связаны между собой. Эта связь между нагрузкой и деформацией была сформулирована впервые Робертом Гуком в 1678г. Согласно закону Гука деформация пропорциональна нагрузке. Этот закон является одним из основных в теории сопротивления материалов.
(1) — закон Гука
Этот закон справедлив в пределах упругой деформации, но пропорциональность нарушается, когда напряжение переходит за некоторый предел пропорциональности, который устанавливается опытным путем.
Коэффициент Е называется модулем упругости первого рода или модулем продольной упругости (модулем Юнга).
Размерность у Е такая же как и у напряжения σ – мегапаскаль.
При одном и том же напряжении относительная деформация будет меньше у того материала, для которого Е будет больше. Следовательно, модуль упругости характеризует жесткость материала.
Величина модуля упругости устанавливается для материалов экспериментально. Ниже приведены средние значения Е для некоторых материалов при комнатной температуре.
Сталь
Чугун
Медь
Бронза
Алюминий
Дерево
Формулу (1) можно записать в другом виде, если учесть и :
(2) – формула Гука
Из формулы (2) следует, что абсолютное удлинение (укорочение), получаемое брусом, прямо пропорционально растягивающей (сжимающей) силе, длине бруса и обратно пропорционально величине — жесткости сечения.
Формулы (1) и (2) являются основными при расчетах на растяжение и сжатие.
Источник
КАТЕГОРИИ:
Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)
Основные понятия и зависимости
Растяжение и сжатие
Лекция № 3
При растяжении (сжатии) прямого бруса в его поперечных сечениях возникает только один внутренний силовой фактор – продольная сила, обозначаемая NZ или N.
Прямые брусья, работающие на растяжение или сжатие, называют стержнями.
Продольные силы, соответствующие деформации растяжения, условимся считать положительными, а сжатия – отрицательными.
При растяжении продольная сила направлена от сечения, а при сжатии – к сечению.
1. Принцип Сен-Венана: равномерное распределение упругих сил во всех поперечных сечениях. И только в сечениях, расположенных очень близко к местам приложения сил нельзя ожидать равномерного распределения сил упругости. Определение сил упругости в местах, лежащих близко к месту приложения внешних сил, представляет трудную задачу, не входящую в курс сопротивления материалов.
2. Гипотеза Я. Бернулли: сечения бруса, плоские и нормальные к его оси до деформации, остаются плоскими и нормальными к оси и при деформации.
Продольная сила в произвольном поперечном сечении бруса численно равна алгебраической сумме проекций на его продольную ось OZ всех внешних сил, приложенных к оставленной части.
В тех случаях, когда продольные силы в различных поперечных сечениях неодинаковы, закон их изменения по длине бруса удобно представить в виде графика, называемого эпюрой продольных сил N=f(z).
Обозначим полученное удлинение Δl, его величина будет:
Δl=l – lo (мм)
Это приращение длины бруса называется полным или абсолютным удлинением при растяжении, а в случае сжатия бруса оно называется полным или абсолютным укорочением.
Абсолютное удлинение (укорочение), очевидно, зависит от первоначальной длины бруса, поэтому более удобной мерой деформации является удлинение (укорочение), отнесенное к первоначальной длине бруса.
Отношение
называется относительной продольной деформацией или относительным удлинением (укорочением).
Относительное удлинение (укорочение) не имеет размерности и выражается в процентах от первоначальной длины:
Нормальное напряжение, возникающее в поперечном сечении бруса, выразим через продольную силу и площадь сечения:
Единица измерения или МПа – мегапаскаль.
Нагрузки и деформации, возникающие в брусе, тесно связаны между собой. Эта связь между нагрузкой и деформацией была сформулирована впервые Робертом Гуком в 1678г. Согласно закону Гука деформация пропорциональна нагрузке. Этот закон является одним из основных в теории сопротивления материалов.
(1) — закон Гука
Этот закон справедлив в пределах упругой деформации, но пропорциональность нарушается, когда напряжение переходит за некоторый предел пропорциональности, который устанавливается опытным путем.
Коэффициент Е называется модулем упругости первого рода или модулем продольной упругости (модулем Юнга).
Размерность у Е такая же как и у напряжения σ – мегапаскаль.
При одном и том же напряжении относительная деформация будет меньше у того материала, для которого Е будет больше. Следовательно, модуль упругости характеризует жесткость материала.
Величина модуля упругости устанавливается для материалов экспериментально. Ниже приведены средние значения Е для некоторых материалов при комнатной температуре.
Сталь
Чугун
Медь
Бронза
Алюминий
Дерево
Формулу (1) можно записать в другом виде, если учесть и :
(2) – формула Гука
Из формулы (2) следует, что абсолютное удлинение (укорочение), получаемое брусом, прямо пропорционально растягивающей (сжимающей) силе, длине бруса и обратно пропорционально величине — жесткости сечения.
Формулы (1) и (2) являются основными при расчетах на растяжение и сжатие.
Дата добавления: 2013-12-14; Просмотров: 392; Нарушение авторских прав?
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
Рекомендуемые страницы:
Читайте также:
Источник
Внутренние усилия при растяжении-сжатии.
Осевое (центральное) растяжение или сжатие прямого бруса вызывается внешними силами, вектор равнодействующей которых совпадает с осью бруса. При растяжении или сжатии в поперечных сечениях бруса возникают только продольные силы N. Продольная сила N в некотором сечении равна алгебраической сумме проекции на ось стержня всех внешних сил, действующих по одну сторону от рассматриваемого сечения. По правилу знаков продольной силы N принято считать, что от растягивающих внешних нагрузок возникают положительные продольные силы N, а от сжимающих — продольные силы N отрицательны (рис. 5).
Чтобы выявить участки стержня или его сечения, где продольная сила имеет наибольшее значение, строят эпюру продольных сил, применяя метод сечений, подробно рассмотренный в статье:
Анализ внутренних силовых факторов в статистически определимых системах
Ещё настоятельно рекомендую взглянуть на статью:
Расчёт статистически определимого бруса
Если разберёте теорию в данной статье и задачи по ссылкам, то станете гуру в теме «Растяжение-сжатие» =)
Напряжения при растяжении-сжатии.
Определенная методом сечений продольная сила N, является равнодействующей внутренних усилий распределенных по поперечному сечению стержня (рис. 2, б). Исходя из определения напряжений, согласно выражению (1), можно записать для продольной силы:
где σ — нормальное напряжение в произвольной точке поперечного сечения стержня.
Чтобы определить нормальные напряжения в любой точке бруса необходимо знать закон их распределения по поперечному сечению бруса. Экспериментальные исследования показывают: если нанести на поверхность стержня ряд взаимно перпендикулярных линий, то после приложения внешней растягивающей нагрузки поперечные линии не искривляются и остаются параллельными друг другу (рис.6, а). Об этом явлении говорит гипотеза плоских сечений (гипотеза Бернулли): сечения, плоские до деформации, остаются плоскими и после деформации.
Так как все продольные волокна стержня деформируются одинаково, то и напряжения в поперечном сечении одинаковы, а эпюра напряжений σ по высоте поперечного сечения стержня выглядит, как показано на рис.6, б. Видно, что напряжения равномерно распределены по поперечному сечению стержня, т.е. во всех точках сечения σ = const. Выражение для определения величины напряжения имеет вид:
Таким образом, нормальные напряжения, возникающие в поперечных сечениях растянутого или сжатого бруса, равны отношению продольной силы к площади его поперечного сечения. Нормальные напряжения принято считать положительными при растяжении и отрицательными при сжатии.
Деформации при растяжении-сжатии.
Рассмотрим деформации, возникающие при растяжении (сжатии) стержня (рис.6, а). Под действием силы F брус удлиняется на некоторую величину Δl называемую абсолютным удлинением, или абсолютной продольной деформацией, которая численно равна разности длины бруса после деформации l1 и его длины до деформации l
Отношение абсолютной продольной деформации бруса Δl к его первоначальной длине l называют относительным удлинением, или относительной продольной деформацией:
При растяжении продольная деформация положительна, а при сжатии – отрицательна. Для большинства конструкционных материалов на стадии упругой деформации выполняется закон Гука (4), устанавливающий линейную зависимость между напряжениями и деформациями:
где модуль продольной упругости Е, называемый еще модулем упругости первого рода является коэффициентом пропорциональности, между напряжениями и деформациями. Он характеризует жесткость материала при растяжении или сжатии (табл. 1).
Таблица 1
Модуль продольной упругости для различных материалов
Абсолютная поперечная деформация бруса равна разности размеров поперечного сечения после и до деформации:
Соответственно, относительную поперечную деформацию определяют по формуле:
При растяжении размеры поперечного сечения бруса уменьшаются, и ε’ имеет отрицательное значение. Опытом установлено, что в пределах действия закона Гука при растяжении бруса поперечная деформация прямо пропорциональна продольной. Отношение поперечной деформации ε’ к продольной деформации ε называется коэффициентом поперечной деформации, или коэффициентом Пуассона μ:
Экспериментально установлено, что на упругой стадии нагружения любого материала значение μ = const и для различных материалов значения коэффициента Пуассона находятся в пределах от 0 до 0,5 (табл. 2).
Таблица 2
Коэффициент Пуассона.
Абсолютное удлинение стержня Δl прямо пропорционально продольной силе N:
Данной формулой можно пользоваться для вычисления абсолютного удлинения участка стержня длиной l при условии, что в пределах этого участка значение продольной силы постоянно. В случае, когда продольная сила N изменяется в пределах участка стержня, Δl определяют интегрированием в пределах этого участка:
Произведение (Е·А) называют жесткостью сечения стержня при растяжении (сжатии).
Механические свойства материалов.
Основными механическими свойствами материалов при их деформации являются прочность, пластичность, хрупкость, упругость и твердость.
Прочность — способность материала сопротивляться воздействию внешних сил, не разрушаясь и без появления остаточных деформаций.
Пластичность – свойство материала выдерживать без разрушения большие остаточные деформации. Неисчезающие после снятия внешних нагрузок деформации называются пластическими.
Хрупкость – свойство материала разрушаться при очень малых остаточных деформациях (например, чугун, бетон, стекло).
Идеальная упругость – свойство материала (тела) полностью восстанавливать свою форму и размеры после устранения причин, вызвавших деформацию.
Твердость – свойство материала сопротивляться проникновению в него других тел.
Рассмотрим диаграмму растяжения стержня из малоуглеродистой стали. Пусть круглый стержень длинной l0 и начальным постоянным поперечным сечением площади A0 статически растягивается с обоих торцов силой F.
Диаграмма сжатия стержня имеет вид (рис. 10, а)
где Δl = l — l0 абсолютное удлинение стержня; ε = Δl / l0 — относительное продольное удлинение стержня; σ = F / A0 — нормальное напряжение; E — модуль Юнга; σп — предел пропорциональности; σуп — предел упругости; σт — предел текучести; σв — предел прочности (временное сопротивление); εост — остаточная деформация после снятия внешних нагрузок. Для материалов, не имеющих ярко выраженную площадку текучести, вводят условный предел текучести σ0,2 — напряжение, при котором достигается 0,2% остаточной деформации. При достижении предела прочности в центре стержня возникает локальное утончение его диаметра («шейка»). Дальнейшее абсолютное удлинение стержня идет в зоне шейки ( зона местной текучести). При достижении напряжением предела текучести σт глянцевая поверхность стержня становится немного матовой – на его поверхности появляются микротрещины (линии Людерса-Чернова), направленные под углом 45° к оси стержня.
Расчеты на прочность и жесткость при растяжении и сжатии.
Опасным сечением при растяжении и сжатии называется поперечное сечение бруса, в котором возникает максимальное нормальное напряжение. Допускаемые напряжения вычисляются по формуле:
где σпред — предельное напряжение (σпред = σт — для пластических материалов и σпред = σв — для хрупких материалов); [n] — коэффициент запаса прочности. Для пластических материалов [n] = [nт] = 1,2 … 2,5; для хрупких материалов [n] = [nв] = 2 … 5, а для древесины [n] = 8 ÷ 12.
Расчеты на прочность при растяжении и сжатии.
Целью расчета любой конструкции является использование полученных результатов для оценки пригодности этой конструкции к эксплуатации при минимальном расходе материала, что находит отражение в методах расчета на прочность и жесткость.
Условие прочности стержня при его растяжении (сжатии):
При проектном расчете определяется площадь опасного сечения стержня:
При определении допускаемой нагрузки рассчитывается допускаемая нормальная сила:
Расчет на жесткость при растяжении и сжатии.
Работоспособность стержня определяется его предельной деформацией [ l ]. Абсолютное удлинение стержня должно удовлетворять условию:
Часто дополнительно делают расчет на жесткость отдельных участков стержня.
Следующая важная статья теории:
Изгиб балки
Источник
Сопротивление материалов
Растяжение и сжатие
Напряжения и характер деформаций при растяжении и сжатии
Растяжением или сжатием называется такой вид деформации, при котором в любом поперечном сечении бруса возникает только продольная сила.
Брусья с прямолинейной осью, работающие на растяжение или сжатие, часто называются стержнями.
Рассмотрим невесомый, защемленный левым концом прямой брус, вдоль оси которого действуют активные силы F и 2F (рис. 1).
Части бруса постоянного сечения, заключенные между поперечными плоскостями (сечениями), в которых приложены одинаковые внешние силы (нагрузки или реакции связей) будем называть участками. Т. е. участок — это однородный кусок бруса и по форме, и по нагрузкам, и по площади сечения.
Изображенный на рис. 1 брус состоит из двух участков – от защемленного конца до места приложения силы F, и от силы F до свободного конца, к которому приложена сила 2F.
Применим метод сечений и определим продольные внутренние силы N1 и N2 на этих участках.
Сначала рассечем брус плоскостью 1-1 и мысленно отбросим правую часть бруса, заменив ее эквивалентными внутренними и внешними силами.
Применим уравнения равновесия для этой части бруса:
∑ Z = 0, следовательно: 2F – F – N1 = 0, откуда N1 = 2F – F = F.
Очевидно, что для сохранения равновесия части бруса достаточно приложить продольную силу. Нетрудно понять, что на втором участке бруса продольная сила в сечении 2-2 будет иметь другое значение: N2 = 2F.
Таким образом, продольная сила в поперечном сечении бруса равна алгебраической сумме внешних сил, расположенных по одну сторону от рассматриваемого сечения и в пределах каждого участка имеет одинаковое значение.
Последнее утверждение не совсем справедливо, поскольку в местах приложения внешних сил внутренние силы распределяются по сложным закономерностям, но с учетом рассмотренного ранее принципа смягчения граничных условий (принципа Сен-Венана), мы допускаем некоторую условную погрешность, незначительно влияющую на итоговый результат расчета.
При определении величины продольной силы алгебраическим сложением внешних сил следует обращать внимание на знаки (векторные значения) этих сил. При расчетах в сопромате обычно принимают растягивающие нагрузки (направленные от сечения) положительными, а сжимающие – отрицательными.
При изучении ряда деформаций мы будем мысленно представлять брусья состоящими из бесконечного количества волокон, расположенных параллельно оси бруса, и предполагать, что при деформации растяжения и сжатия эти волокна не надавливают друг на друга (гипотеза о не надавливании волокон).
Чтобы понять характер напряжений и деформаций, возникающих в сжимаемом или растягиваемом брусе, представим себе прямой брус из резины, на котором нанесена сетка из продольных и поперечных линий. Если такой брус подвергнуть деформации растяжения, можно заметить, что:
- поперечные линии на брусе остаются ровными и перпендикулярными оси бруса, а расстояния между ними увеличатся;
- продольные линии останутся прямыми, а расстояния между ними уменьшатся.
Из этого эксперимента следует, что при растяжении справедлива гипотеза плоских сечений (гипотеза Бернулли), и, следовательно, все волокна бруса удлинятся на одну и ту же величину. Все это позволяет сделать вывод, что при растяжении и сжатии в поперечных сечениях бруса возникают только нормальные напряжения, равномерно распределенные по сечению. Эти напряжения можно определить по формуле:
σ = N / А,
где N – продольная сила, А – площадь поперечного сечения бруса.
Очевидно, что при растяжении и сжатии форма сечения бруса на величину напряжений не влияет.
Для наглядного изображения распределения продольных сил и нормальных напряжений вдоль оси бруса строят графики, называемые эпюрами (от французского «epure» — чертеж, график) , при этом на эпюрах при построении учитывают знаки (векторные значения) продольных сил и напряжений.
Для ступенчатого бруса, к которому приложены сжимающая 2F и растягивающая 3F силы на рис. 2 показаны соответствующие эпюры продольных сил N и нормальных напряжений σ.
Порядок построения эпюр таков: сначала под чертежом бруса проводят прямую линию, параллельную оси бруса (эта линия условно представляет брус), затем напротив каждого сечения бруса откладывают по этой линии величину силовых факторов: для положительных – вверх, для отрицательных — вниз. Масштаб при этом выбирается произвольный. Разумеется, перед построением эпюры необходимо подсчитать величину силовых факторов (сил, моментов сил или напряжений) в каждом участке бруса.
На полученном графике в кружках указываются знаки силовых факторов по участкам, на наружных углах ступенчатых переходов ставятся числовые значения этих силовых факторов, а вся площадь графика заштриховывается тонкими линиями, перпендикулярными оси.
Слева от оси эпюры указывается, какой силовой фактор на ней представлен.
По эпюрам, представленным на рис. 2 можно заметить, что в местах приложения внешних нагрузок и реакций внутренние силовые факторы изменяются скачкообразно (принцип Сен-Венана).
Визуальное исследование эпюры позволяет определить критические участки бруса, находящиеся в наиболее напряженном состоянии. Так, по представленным на рис. 2 эпюрам напряжений, возникающих в брусе, можно определить, что критическим является 2-й участок, поскольку здесь возникает наибольшее напряжение (по эпюре видно, что это напряжение сжатия, т. к. оно имеет отрицательное значение).
Кроме того, эпюра любого силового фактора позволяет (без применения лишних расчетов) определить силу или момент, действующие на брус со стороны, например, заделки, поскольку после построения эпюры со стороны свободного конца бруса эти силовые факторы отобразятся графически, без вычислений.
Ниже размещен видеоролик, в котором подробно объясняется порядок построения эпюр продольных сил и напряжений, возникающих в брусе при растяжении и сжатии, а также выводы, которые можно сделать на основе визуального анализа графиков.
Видеоурок ведет преподаватель ГОУ СПО «Нижнетагильский горно-металлургический колледж» Чирков А. С.
***
Материалы раздела «Растяжение и сжатие»:
- Деформации при растяжении и сжатии. Потенциальная энергия деформации растяжения.
- Расчеты на прочность при растяжении и сжатии. Статически неопределимые задачи.
- Закон Гука
Смятие
Правильные ответы на вопросы Теста № 4
№ вопроса | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
Правильный вариант ответа | 1 | 1 | 2 | 1 | 3 | 2 | 2 | 1 | 3 | 1 |
Источник