Гибка с растяжением материала

Гибка с растяжением материала thumbnail



Формообразование сложнопрофильных деталей на автоматизированных профилегибочных машинах относится к операциям объемного совмещенного пластического формообразования. Заготовка подвергается существенным изменениям своей первоначальной формы (прямолинейной, реже — криволинейной) и испытывает значительные деформации и смещения сечений. Формообразованием на профилегибочных машинах в авиастроении изготовляются листовые и профильные заготовки. Процесс занимает одно из ведущих мест по трудоемкости в изготовлении самолета или другого изделия авиационной техники. Трудоемкость изготовления гнутых профилей составляет 25 — 27 % от общего объема. К формообразуемым деталям относят стрингеры, шпангоуты, пояса нервюр и лонжеронов.

Профилегибочные машины с ручным управлением получили широкое распространение в начале пятидесятых годов прошлого века в связи с началом выпуска цельнометаллических фюзеляжей самолетов. За счет ее использования в технологии изготовления сложнопрофильных деталей удалось предотвратить потерю устойчивости плоской формы профиля при формообразовании, повысить точность изготовления деталей из авиационных сплавов.

В последние тридцать лет исследовались вопросы теории процессов формообразования сложнопрофильных деталей методами гибки, поставлены и во многом решены задачи силового и координатного управления формообразованием. Так же разработана система автоматизированного проектирования и расчета технологических параметров процесса гибки с растяжением, проводились исследования процессов гибки с растяжением с применением дифференциального нагрева и устройства доводки внешнего слоя профиля с помощью раскатывающего ролика.

Однако вопросы автоматического управления формообразованием при гибке с растяжением, обеспечения универсальности и слабой зависимости от входных возмущающих факторов и параметров до сих пор были проработаны совершенно недостаточно. Существующее в производстве оборудование в основном реализует способ управления формообразованием по усилиям (давлению в полостях гидроцилиндров).

Автоматизированные профилегибочные машины, оснащенные датчиками линейных и угловых перемещений, получили возможность осуществления формообразования по перемещениям, а также по скоростям перемещений. В числе выпущенных и выпускаемых машин необходимо выделить ПГР-6, ПГР-7, ПГР-6А, ПГР-6АД. Последние две оснащены УЧПУ 2Р32М. Внедрение профилегибочных машин с числовым программным управлением, таких, как ПГР-6АД, при программировании методом обучения позволяет неограниченное число раз воспроизводить эмпирически подобранную программу перемещения рабочих органов по координатам.

При исследовании вопросов формообразования сложнопрофильных деталей на оборудовании гибки с растяжением учитывался опыт современного машиностроения, а также исследования в области пластического деформирования профильных заготовок из авиационных сплавов методами гибки. Необходимо отметить значительное число изобретений, посвященных схемным и конструктивным решениям оборудования гибки с растяжением.. Существует большое количество информационных материалов по близким аналогам процесса формообразования на гибочных машинах. К ним можно отнести публикации по металлорежущему, сварочному оборудованию, средствам автоматизации процессов производства, по другим близким тематикам.

Областью настоящего исследования является достаточно узкая специализация — формообразование на профилегибочных машинах.

Основными отличительными чертами рассматриваемых процессов формообразования являются приложение растягивающих усилий, выводящих материал заготовки в зону пластических деформаций, и использование шаблона или пуансона, задающих требуемый контур. Гибка с растяжением с опорой на пуансон позволяет значительно уменьшить пружинение детали, возникающее вследствие неравномерности изгибных нормальных напряжений по сечениям, а также повышать точность изготовления детали в поперечном сечении за счет предотвращения потери устойчивости плоской формы (закручивания, малковки, серповидности).

Особенности летательных аппаратов определяют конструкционные и обусловленные ими взаимнопротиворечивые требования к материалам. Как правило выбор материала в сторону улучшения конструкционных свойств приводит к возможному ухудшению показателей технологичности. В авиастроении применяются материалы с низким удельным весом и достаточной прочностью — алюминиевые, магниевые, титановые сплавы, упрочняемые и неупрочняемые термической обработкой.

Число деталей из профилей может достигать десятков тысяч, общая их длина — до 30 км, размеры деталей от 25 до 1000 мм, масса может меняться от 0,01 до 25 кг. К числу технологических параметров относят пластичность, обрабатываемость резанием, свариваемость.

Среди причин и доминирующих факторов, влияющих на возникновение погрешности детали, связанных с заготовкой, можно выделить вариации размерно-механических параметров. К размерным параметрам относятся изменения размеров поперечных сечений по длине, толщины полки и другие, а также их различия в партии.

Изменение свойств материала заготовки связано со способом изготовления профиля (гибкой из листа на штампах, фрезерованием), а также термообработкой (отжигом, закалкой на воздухе или селитровой ванне). Для авиационных сплавов, упрочняемых термообработкой, в частности Д16Т, происходят значительные изменения механических свойств во времени, поэтому для этих сплавов разрешена гибка с растяжением в свежезакаленном состоянии только в течение первых двух часов. В соответствии с технологией, применяемой в авиационной промышленности, детали изготовляют обязательно партиями.

Читайте также:  Оказание первой помощи при растяжении и разрыве связок

Формообразование заготовок производится при различной температуре в зависимости от требований технологического процесса. Применяется операция дополнительного нагрева заготовки до температуры 420 С0, при которой имеют место высокие пластические свойства заготовки, уменьшающие момент внутренних нагрузок.

Погрешности установки имеют как случайные, так и систематические составляющие. К ним, в частности, относятся погрешности установки по высоте, в горизонтальной плоскости, углы перекоса и наклона.

Гибка с растяжением материалаПрименение смазки может оказывать различное влияние на точность и надежность процесса формообразования. Смазка при ориентации «полка внутрь» уменьшает остаточные деформации пружинения, для ориентации «полка наружу» — наоборот, может увеличить остаточные деформации.

К факторам технологической наследственности, которые в разное время и в разных условиях могут оказывать влияние на выходные параметры, относятся вариации механических свойств поверхностного слоя (в зависимости от способа предварительного формообразования), шероховатость поверхности, наличие смазки, технологических отверстий на концах профиля и другие.

Анализ причин погрешностей формообразования, связанных с обтяжным пуансоном, в свою очередь, проводится с учетом погрешностей изготовления его контура и базовых отверстий пуансона, случайным и систематическим смещением его сегментов друг относительно друга.

Также к влияющим факторам относится температура пуансона, что особенно важно при предварительном нагреве заготовки. Совершенно очевидно влияние износа контура пуансона и налипания на него посторонних частиц на точность формообразования.

Жесткость материала обтяжного пуансона, стыков соединения его сегментов также может влиять на изменение выходных параметров детали, причем в ряде случаев малая жесткость пуансона, особенно на его концах, приводит к уменьшению погрешностей формообразования.

В свою очередь погрешности установки оказывают различное влияние на возникновение погрешностей формообразования. Например, самоустанавливаемость в плоскости гибки пуансона для формообразования по усилиям практически не влияет на изменение остаточных деформаций. Наоборот, при управлении по перемещениям остаточные деформации увеличиваются для самоустанавливающихся пуансонов.

Погрешности установки разделяются на линейные, угловые, в плоскости и из плоскости гибки, комбинированные.

Различные причины, связанные с исполнительными устройствами оборудования гибки с растяжением, также влияют на снижение точности и надежности формообразования. Вполне очевидно влияние температуры узлов, а также температуры рабочей жидкости. Геометрические параметры, износ подшипников, кулачков патронов, вылет зажимных патронов, деформации узлов оказывают влияние на точность в зависимости от конкретных условий и способа управления формообразованием по перемещениям, усилиям, скоростям и моментам.

К погрешности настройки кинематической схемы могут быть отнесены погрешности задания расстояния между центрами качания крыльев, диапазон рабочих перемещений зажимных патронов и другие.

Влияние условий формообразования также во многом задает априорную неопределенность реализации процесса. Температура внешней среды влияет на точность формообразования опосредовано, через температуру заготовки, пуансона, углов и рабочей жидкости.

Трение между заготовкой и пуансоном и их взаимная ориентация изменяют напряженно-деформированное состояние контактирующего слоя профиля, положение нейтрального слоя и, следовательно, необходимое усилие растяжения. Закрепление профиля предотвращает перетягивание одного гидроцилиндра другим, уменьшает деформации пуансона и снижает влияние нежелательных динамических режимов.

Программно-математическое обеспечение УЧПУ, система автоматизированного проектирования, система активного контроля точностью обработки партии деталей также оказывают влияние на выходные параметры процесса формообразования через параметры силового нагружения. Однако это влияние имеет ряд специфических особенностей, связанных с заданием количества опорных точек в управляющей программе, погрешностями задания управляющих параметров в УП, погрешности интерполяции и др.

Функционирование системы контроля в целом повышает точность формообразования, однако погрешности измерения, неоптимальное формирование корректирующих приращений и погрешности отработки управляющих параметров уменьшают потенциальные возможности системы контроля.

Одним из слабых мест технологии гибки на профилегибочных машинах является необходимость регулировки гидроаппаратуры, например, электрогидроусилителей, требующая высокой квалификации обслуживающего персонала.

Последовательность приложения нагрузок вида «изгиб — растяжение», «растяжение — изгиб», «растяжение — изгиб — растяжение» может иметь различные результаты по увеличению или уменьшению погрешностей формообразования в зависимости от угла гибки, условий формообразования и других факторов. В частности, последовательность «изгиб — растяжение» позволяет достичь наибольшей точности на малых углах гибки. Выбор и задание регулируемых направляющих параметров (момента, скорости, перемещения, силы) в зависимости от входных факторов может оказывать влияние различной степени на вариации выходных параметров.

Условие освобождения профиля, ориентированного «полкой внутрь», могут привести к растяжению профиля или боковому изгибу. Рекомендуется освобождать профиль из пуансона ударами по торцу детали в осевом направлении. Прикатка доводочным устройством внешнего слоя профиля может привести к различным результатам в зависимости от числа проходов и усилия прижима ролика.

Читайте также:  Лечение при растяжении у кота

При формообразовании могут иметь место кратковременные нестационарные и динамические процессы, они приводят к возникновению отклонений от нормального режима, или даже к аварийной ситуации. В основном эти явления возникают при отладке управляющей программы. При воспроизведении отлаженной программы вероятность их возникновения достаточно низка.

Вывод: На основе выполненных исследований произведен анализ управления формообразованием сложнопрофильных деталей на автоматизированных профилегибочных машинах.

Литература:

  1. Гибка с растяжением // Энциклопедия по машиностроению XXL. URL: https://mash-xxl.info/info/292689/ (дата обращения: 5.06.2017).

Основные термины (генерируются автоматически): формообразование, растяжение, погрешность установки, точность формообразования, машина, рабочая жидкость, различное влияние, обтяжной пуансон, способ управления, уменьшение погрешностей формообразования.

Источник

Гибка листового металла — одна из распространенных операций холодного и горячего деформирования. Она отличается малой энергоемкостью.

Гибка листового металла — одна из распространенных операций холодного и горячего деформирования. Она отличается малой энергоемкостью, и при правильной разработке техпроцесса позволяет успешно производить из плоских заготовок пространственные изделия различной формы и размеров.

Классификация и особенности процесса

В соответствии с поставленными задачами технология гибки листового металла разрабатывается для следующих вариантов:

  1. Одноугловая (называемая иногда V-образной гибкой).
  2. Двухугловая или П-образная гибка.
  3. Многоугловая гибка.
  4. Радиусная гибка листового металла (закатка) — получение изделий типа петель, хомутов из оцинковки и пр.

Усилия при гибке невелики, поэтому ее преимущественно выполняют в холодном состоянии. Исключение составляет гибка стального листа из малопластичных металлов. К ним относятся дюралюминий, высокоуглеродистые стали (содержащие дополнительно значительный процент марганца и кремния), а также титан и его сплавы. Их, а также заготовки из толстолистового металла толщиной более 12…16 мм, гнут преимущественно вгорячую.

Гибку сочетают с прочими операциями листовой штамповки: резку и гибку, с вырубкой или пробивкой сочетают довольно часто. Поэтому для изготовления сложных многомерных деталей широко используются штампы, рассчитанные на несколько переходов.

Особым случаем гибки листового металла считается гибка с растяжением, которую используют для получения длинных и узких деталей с большими радиусами гибки.

В зависимости от размера и вида заготовки, а также требуемых характеристик продукции после деформирования, в качестве гибочного оборудования используются:

  • Вертикальные листогибочные прессы с механическим или гидравлическим приводом;
  • Горизонтальные гидропрессы с двумя ползунами;
  • Кузнечные бульдозеры — горизонтально-гибочные машины;
  • Трубо- и профилегибы;
  • Универсально-гибочные автоматы.

Для получения уникальных по форме и размерам конструкций, в частности, котлов турбин и т.п., применяют и экзотические технологии гибки листовой стали, например, энергией взрыва. В противоположность этому, вопрос — как гнуть жесть — не вызывает сложностей, поскольку пластичность этого материала — весьма высокая.

Характерная особенность листогибочных машин — сниженные скорости деформирования, увеличенные размеры штампового пространства, сравнительно небольшие показатели энергопотребления. Последнее является основанием для широкого производства ручных гибочных станков, предназначенных для деформации оцинкованного материала. Они особо популярны в небольших мастерских, а также у индивидуальных пользователей.

Несмотря на кажущуюся простоту технологии, баланс напряжений и деформаций состояния в заготовке определить затруднительно. В процессе изгиба материала в нем возникают напряжения, вначале — упругие, а далее — пластические. При этом гибка листового материала отличается значительной неравномерностью деформации: она более интенсивна в углах гибки, и практически незаметна у торцов листовой заготовки. Гибка тонколистового металла отличается тем, что внутренние его слои сжимаются, а наружные — растягиваются. Условную линию, которая разделяет эти зоны, называют нейтральным слоем, и его точное определение является одним из условий бездефектной гибки.

В процессе изгиба металлопрокат получает следующие искажения формы:

  • Изменение толщины, особенно для толстолистовых заготовок;
  • Распружинивание/пружинение — самопроизвольное изменение конечного угла гибки;
  • Складкообразование металлического листа;
  • Появление линий течения металла.

Все эти обстоятельства необходимо учитывать, разрабатывая технологический процесс штамповки.

Этапы и последовательность технологии

Здесь, и в дальнейшем речь пойдет о процессах штамповки листового металла в холодном состоянии.

Разработка проводится в следующей последовательности:

  1. Анализируется конструкция детали.
  2. Рассчитывается усилие и работа процесса.
  3. Подбирается типоразмер производственного оборудования.
  4. Разрабатывается чертеж исходной заготовки.
  5. Рассчитываются переходы деформирования.
  6. Проектируется технологическая оснастка.

Анализ соответствия возможностей исходного материала необходим для того, чтобы выяснить его пригодность для штамповки по размерам, приведенным на чертеже готовой детали. Этап выполняют по следующим позициям:

  • Проверка пластических способностей металла и сопоставление результата с уровнем напряжений, которые возникают при гибке. Для малопластичных металлов и сплавов процесс приходится дробить на несколько переходов, а между ними планировать межоперационный отжиг, который повышает пластичность;
  • Возможность получения радиуса гиба, при котором не произойдет трещинообразования материала;
  • Определение вероятных искажений профиля или толщины заготовки после обработки давлением, особенно при сложных контурах у детали;

По результатам анализа иногда принимают решение о замене исходного материала на более пластичный, о необходимости предварительной разупрочняющей термической обработки, либо используют подогрев заготовки перед деформацией.

Обязательным пунктом при разработке технологического процесса считается расчет минимально допустимого угла гибки, радиуса гибки и угла пружинения.

Читайте также:  Мазь от растяжений и ушибов траумель

Радиус гибки rmin вычисляют с учетом пластичности металла заготовки, соотношения ее размеров и скорости, с которой будет проводиться деформирование (гидропрессы, с их пониженными скоростями передвижения ползуна, предпочтительнее более скоростных механических прессов). При уменьшении значения rmin все металлы претерпевают так называемое утонение — уменьшение первоначальной толщины заготовки. Интенсивность утонения определяет коэффициент утонения λ, %, который показывает, на сколько уменьшится толщина конечного изделия. Если это значение оказывается более критичного, то исходную толщину s металла заготовки приходится увеличивать.

Для малоуглеродистых листовых сталей соответствие между вышеуказанными параметрами приведено в таблице (см. табл. 1).

Таблица 1

Таким образом, при определенных условиях металл заготовки может даже несколько выпучиваться.

Не менее важным является и определение минимального радиуса гибки, который также зависит от исходной толщины металла, расположения волокон проката и пластичности материала (см. табл. 2). В том случае, когда радиус гиба слишком мал, то наружные волокна стали могут разрываться, что нарушает целостность готового изделия. Поэтому минимальные радиусы принято отсчитывать по наибольшим деформациям крайних частей заготовки, с учетом относительного сужения ψ деформируемого материала (устанавливается по таблицам). При этом учитывают также и величину деформации заготовки. Например, при малых деформациях используют зависимость

а при больших деформациях — более точное уравнение вида

Таблица 2

Эффект вероятного пружинения можно учесть при помощи данных по фактическим углам пружинения β, которые приведены в таблице 3. Данные в таблице соответствуют условиям одноугловой гибки.

Таблица 3

Определение усилия гибки

Силовые параметры гибки зависят от пластичности металла и интенсивности его упрочнения в ходе деформировании. При этом значение имеет направление прокатки исходной заготовки. Дело в том, что после прокатки металл приобретает свойство анизотропии, когда в направлении оси прокатки остаточные напряжения меньше, чем в противоположном. Соответственно, если согнуть металл вдоль волокон, то при одной и той же степени деформации вероятность разрушения заготовки существенно уменьшается. Поэтому ребро гиба располагают таким образом, чтобы угол между направлением прокатки и расположением заготовок в листе, полосе или ленте был минимальным.

Для расчета силовых параметров уточняют, как будет выполняться деформирование. Оно возможно изгибающим моментом, когда заготовка укладывается по фиксаторам/упорам, и далее деформируется свободно, либо усилием, когда в завершающий момент процесса полуфабрикат опирается на рабочую поверхность матрицы. Свободная гибка проще и менее энергоемка, зато гибка с калибровкой дает возможность получать более точные детали.

Если упрочнение металла невелико (например, гнется изделие из алюминия, либо малоуглеродистой стали), то момент можно вычислить по зависимости:

где σт — предел текучести материала заготовки перед штамповкой.

Больший угол гиба (свыше 450) должен учитывать интенсивность упрочнения заготовки, которая зависит от размеров ее поперечного сечения:

где b — ширина заготовки.

Для расчета значений технологического усилия Р используют следующие зависимости. При одноугловой свободной гибке

, где

 наибольшая деформация сечения заготовки;

α — угол гибки;

σв — значение предела материала на прочность.

Когда гибка — несвободная (с калибровкой в конце рабочего хода ползуна), то для расчета усилия используют зависимость

где Fпр — площадь проекции заготовки, подвергаемой изгибу;

pпр — удельное усилие гибки с калибровкой, которое зависит от материала изделия:

  • Для алюминия — 30…60 МПа;
  • Для малоуглеродистых сталей — 75…110 МПа;
  • Для среднеуглеродистых сталей — 120…150 МПА;
  • Для латуней — 70…100 МПа.

Для выбора типоразмера оборудования, рассчитанные усилия увеличивают на 25…30%, и сравнивают полученный результат с номинальными (паспортными) значениями.

Автор статьи

Инженер-технолог в области металлургии и металлообработки

Поиск записей с помощью фильтра:

Источник