Газобетон предел прочности на растяжение
Газобетон является легким пористым материалом, который имеет довольно низкий класс прочности. Да, по прочности на сжатие газобетон проигрывает почти всем строительным материалам. Но, очень важно понимать, что даже имеющейся прочности с запасом хватает на возведение двух/трехэтажного дома. Главное выбрать требуемую плотность газобетона, которая обеспечит нужную прочность по проекту.
Для строительства несущих стен применяют газобетоны плотностью от D300 до D700, а самыми популярными являются середнячки – D400 и D500, так как они обладают оптимальными прочностными и теплосберегающими свойствами.
Современные заводы по производству автоклавного газобетона изготавливают очень качественный и однородный газобетон, класс прочности которого, намного выше чем у устаревших заводов. К примеру, лучший газобетон плотностью D400 обладает классом B2.5, в то время, как более дешевый дотягивает только до B1.5.
Числовое значение класса B2.5 обозначает, что квадратный миллиметр газобетона выдерживает нагрузку в 2.5 Н(Ньютона). То есть, квадратный сантиметр гарантировано выдерживает нагрузку в 25 кг.
Само понятие “класс прочности газобетона” означает то, что каждый блок, привезенный с завода будет обладать прочностью, не менее чем заявлена производителем. То есть, это обеспеченная гарантийная прочность, ниже которой быть не должно.
Марка газобетона – среднестатистическое значение по прочности, получаемое при тестировании нескольких блоков из партии. То есть, взяли шесть блоков на пробу, и их показатели прочности составили соответственно: 31, 32, 32, 33, 35, 35 кг/см2. Среднее полученное значение – 33 кг/ см2. Что соответствует марке М35.
Марка газобетона | Класс прочности на сжатие | Средняя прочность (кг/см²) |
D300 (300 кг/м³) | B0,75 — B1 | 10 — 15 |
D400 | B1,5 — B2,5 | 25 -32 |
D500 | B1,5 — B3,5 | 25 — 46 |
D600 | B2 — B4 | 30 — 55 |
D700 | B2 — B5 | 30 — 65 |
D800 | B3,5 — B7,5 | 46 — 98 |
D900 | B3,5 — B10 | 46 — 13 |
D1000 | B7,5 — B12,5 | 98 — 164 |
D1100 | B10 — B15 | 131 — 196 |
D1200 | B15 — B20 | 196 — 262 |
Марка прочности – это усредненное значение, а класс прочности – обеспеченное значение, ниже которого быть не может.
Чтобы определиться с требуемым классом прочности газобетона, необходимо знать расчетное сопротивление кладки и несущую способность участка стены.
Несущая способность стены будет примерно в 5 раз меньше, чем прочность материала на сжатие. Это связано с различными факторами, уменьшающими несущую способность кладки, и запасами по прочности по СНиП.
Основные факторы, влияющие на несущую способность: высота стены, толщина стены, и зона приложения нагрузки(эксцентриситет). Чем стена выше и тоньше, тем она сильнее может изгибаться под нагрузкой, что уменьшает ее расчетную несущую способность.
Зона приложения нагрузки(эксцентриситет) также сильно влияет на прочность конструкции, ведь если плита перекрытия опирается на стену только краем, и не доходит до центра стены, получается внецентренное сжатие, приводящее к сгибающему моменту.
Вывод. Газобетон бывает различной плотности от D300 до D700 и различных классов по прочности, от B1 до В5, что позволяет строить из него дома различной этажности и сложности. Если прочности газобетона не хватает, применяются железобетонные включения, на подобии железобетонных балок, перемычек, армопоясов и армокаркасов.
Источник
Прочность автоклавного и неавтоклавного газобетонов характеризуют классами по прочности на сжатие, определяемыми по ГОСТ 10180, ГОСТ Р53231.
Для газобетонов установлены ГОСТ 31359 следующие классы: В0,35; В0,5; В0,75; В1; В1,5; В2; В2,5; В3,5; В5; В7,5; В10; В12,5; В15; В20.
Плотность газобетона нормируется марками по плотности D(Д), определяемыми по ГОСТ 27005. По показателями средней плотности назначают следующие марки газобетонов: D200; D250, D300, D350, D400, D450, D500, D600, D700, D800, D900, D1000, D1100, D1200.
Стабильность показателей газобетонов по плотности и прочности на сжатие характеризуется коэффициентами вариации, которые определяются в соответствии с требованиями СН 277, ГОСТ 27005 и ГОСТ Р53231. Средние значения коэффициентов вариации газобетонов не должны превышать: по плотности 5%; по прочности на сжатие – 15%.
Для учета российского зимнего фактора назначают и контролируют следующие марки газобетона по морозостойкости в циклах замораживания-оттаивания после водонасыщения: F15; F25; F35; F50; F75; F100, определяемые по ГОСТ 25485 или ГОСТ 31359.
Назначение марки газобетона по морозостойкости проводят в зависимости от режима эксплуатации конструкции и климатического района.
Показатели классов по прочности на сжатие и марок по морозостойкости в зависимости от марок по плотности приведены в таблице 3.2.
Нормативные сопротивления газобетонов сжатию, растяжению и срезу приведены в таблице 3.3, расчетные сопротивления – в таблице 3.4.
Значения начального модуля упругости Еb при сжатии и растяжении для газобетонов с влажностью 10±2% (по массе) принимаются по таблице 3.5.
При соответствующем экспериментально обосновании допускается учитывать влияние не только класса газобетона про прочности и его марки по плотности, но и состава и вида вяжущего, а также условий изготовления и твердения газобетона, при этом допускается принимать другие значения Еb.
Коэффициент линейной температурной деформации газобетонов аbtпри изменениях температуры от минус 90оС до плюс 50оС установлен равным аbt =8,0*10-5оС-1.
При наличии данных о минералогическом составе цемента и заполнителей, рецептуре смеси, влажности газобетона и т.д. разрешается принимать другие значения аbt, обоснованные экспериментально.
Начальный коэффициент поперечной деформации газобетонов (коэффициент Пуассона) V принимается равным 0,2, а модуль сдвига газобетонов G – равным 0,4 соответствующих значений Еb, указанных в таблице 3.5.
Усадка при высыхании газобетонов, определяемая по ГОСТ 25484 (приложение 2), не должна превышать 0,5 мм/м.
Коэффициенты теплопроводности и паропроницаемости газобетонов приведены в таблице 3.6.
Отпускная влажность изделий и конструкций не должна превышать (% по массе):
· 25 – для газобетонов, изготовленных на основе песка;
· 30 – для газобетонов, изготовленных на основе сланцевой золы;
· 35 — для газобетонов, изготовленных на основе кислой золы-уноса теплоэлектростанций.
Показатели таблицы 4.7 для конструкций конкретного производства и режима эксплуатации могут быть уточнены в экспериментальном порядке на основе натурных испытаний с 90%-ной обеспеченностью (приложение В).
Таблица 3.2 – Показатели классов по прочности и марок по морозостойкости для разных марок ячеистых бетонов по плотности.
Вид бетона | Марка бетона по средней плотности | Бетон автоклавный | |
Класс по прочности на сжатие | Марка по морозостойкости | ||
Теплоизоляционный | D200 | В0,35; В0,5 | — |
D250 | В0,5; В0,75 | ||
D300 | В0,75; В1 | ||
D350 | В1; В1,5; В2; В2,5 | ||
Конструкционно-теплоизоляционный | D400 | В1; В1,5; В2 | F25 |
D500 | В1,5; В2; В2,5 | F25, F35 | |
D600 | В2; В2,5; В3,5 | F25, F35, F50, F75 | |
Конструкционный | D700 | В2,5; В3,5; В5 | F25, F35, F50, F75, F100 |
D800 | В3,5; В5; В7,5 | ||
D900 | В3,5; В5; В7,5; В10 | ||
D1000 | В7,5; В10; В12,5 | ||
D1100 | В10; В12,5; В15 | ||
D1200 | В15; В17,5; В20 |
Таблица 3.3 –Нормативные сопротивления газобетона сжатию, растяжению и срезу.
Показатели | Нормативные сопротивления ячеистого бетона сжатию Rbn, растяжению Rbtn и срезу Rshn; расчетные сопротивления для предельных состояний второй группы Rb,ser, Rbt,ser и Rsh,ser при классе бетона по прочности на сжатие | ||||||||||
Класс бетона по прочности на сжатие | В1 | В1,5 | В2,0 | В2,5 | В3,5 | В5 | В7,5 | В10 | В12,5 | В15 | В20 |
Сопротивлению осевому сжатию (призменная прочность ) Rbnи Rb,ser | 0,95 9,69 | 1,40 14,3 | 1,90 19,4 | 2,4 24,5 | 3,3 33,7 | 4,60 46,9 | 6,9 70,4 | 9,0 91,8 | 10,5 107 | 11,5 117 | 16,8 168,3 |
Сопротивление бетонов растяжению Rbtn и Rbt,ser | 0,14 1,43 | 0,22 2,24 | 0,26 2,65 | 0,31 3,16 | 0,41 4,18 | 0,55 5,61 | 0,63 6,42 | 0,89 9,08 | 1,0 10,2 | 1,05 10,7 | 1,1 11,2 |
Сопротивление бетонов срезу Rshn, Rsh,ser | 0,2 2,06 | 0,32 3,26 | 0,38 3,82 | 0,46 4,56 | 0,6 6,03 | 0,81 8,08 | 0,93 9,26 | 1,31 13,09 | 1,47 14,7 | 1,54 15,44 | 1,6 16,2 |
Примечания 1 Сверху указаны сопротивления в МПа, снизу – в кгс/см2 2 Величины нормативных сопротивлений ячеистых бетонов даны для состояния средней влажности ячеистого бетона 10% (по массе) |
Таблица 3.4 – Расчетные сопротивления газобетона сжатию, растяжению и срезу
Показатели | Расчетные сопротивления ячеистого бетона для предельных состояний первой группы Rb, Rbt и Rsh при классе бетона по прочности на сжатие | ||||||||||
Класс бетона по прочности на сжатие | В1 | В1,5 | В2,0 | В2,5 | В3,5 | В5 | В7,5 | В10 | В12,5 | В15 | В20 |
Сопротивлению осевому сжатию (призменная прочность) Rb | 0,63 6,42 | 0,95 9,69 | 1,3 13,3 | 1,6 16,3 | 2,2 22,4 | 3,1 31,6 | 4,6 46,9 | 6,0 61,2 | 7,0 71,4 | 7,7 78,5 | 11,6 116,0 |
Сопротивление бетонов растяжению Rbt | 0,06 0,612 | 0,09 0,918 | 0,12 1,22 | 0,14 1,43 | 0,18 1,84 | 0,24 2,45 | 0,28 2,86 | 0,39 4,0 | 0,44 4,49 | 0,46 4,69 | 0,70 8,02 |
Сопротивление бетонов срезу Rsh | 0,09 0,90 | 0,14 1,42 | 0,17 1,66 | 0,20 1,98 | 0,26 2,62 | 0,35 3,51 | 0,40 4,03 | 0,57 5,69 | 0,64 6,39 | 0,67 6,71 | 0,70 7,04 |
Примечания 1 Сверху указаны сопротивления в МПа, снизу – в кгс/см2 2 Величины нормативных сопротивлений ячеистых бетонов даны для состояния средней влажности ячеистого бетона 10% (по массе) |
Таблица 3.5 – Начальные модули упругости автоклавного газобетона при сжатии
Марка по средней плотности | Начальные модули упругости автоклавного ячеистого бетона при сжатии и растяжении Eb при классе бетона по прочности на сжатие | |||||||||
В1 | В1,5 | В2,0 | В2,5 | В3,5 | В5 | В7,5 | В10 | В12,5 | В15 | |
D400 | 075 7,65 | 1 10,2 | 1,25 12,7 | 1,7 17,3 | ||||||
D500 | 1,4 14,3 | 1,7 17,3 | 1,8 18,4 | |||||||
D600 | 1,8 18,4 | 2,1 21,4 | ||||||||
D700 | 2,5 25,5 | 2,9 29,6 | ||||||||
D800 | 3,4 34,7 | 4,0 40,8 | ||||||||
D900 | 3,8 38,8 | 4,5 45,9 | 5,5 56,1 | |||||||
D1000 | 6,0 61,2 | 7,0 71,4 | ||||||||
D1100 | 7,9 80,6 | 8,3 84,6 | 8,6 87,7 | |||||||
D1200 | 9,3 94,6 |
Таблицы 3.6 – Коэффициенты теплопроводности и паропроницаемости автоклавного газобетона
Вид бетона | Марка бетона по средней плотности | Коэффициент теплопроводности бетона в сухом состоянии λо, Вт/(м*оС) | Коэффициент паропроницаемости бетона µ, мг/(м*ч*Па), не менее | Расчетные коэффициенты теплопроводности λ, Вт/(м*оС) для w=4% | Расчетные коэффициенты теплопроводности λ, Вт/(м*оС) для w=5% |
Теплоизоляцион-ный | D200 D250 D300 D350 | 0.048 0.06 0.072 0.084 | 0.3 0.28 0.26 0.25 | 0.056 0.070 0.084 0.099 | 0.059 0.073 0.088 0.103 |
Конструкционно-изоляционный | D400 D450 D500 D600 D700 D800 | 0.096 0.108 0.12 0.14 0.17 0.19 | 0.23 0.21 0.20 0.16 0.15 0.14 | 0.113 0.127 0.141 0.17 0.199 0.223 | 0.117 0.132 0.147 0.183 0.208 0.232 |
Конструкционный | D900 D1000 D1100 D1200 | 0.22 0.24 0.26 0.28 | 0.12 0.11 0.10 0.09 | 0.258 0.282 0.305 0.329 | 0.269 0.293 0.318 0.342 |
Вернуться к оглавлению. Читать дальше
Источник
Наиболее часто задаваемый вопрос от клиентов — это насколько надежный газобетон как стеновой материал, если строить дом высотой в несколько этажей. И хотя он обладает высокой прочностью, но все же первичное недоверие к этому стройматериалу часто бывает вызвано его внешним видом — пористой структурой с легким весом. Из-за этого в самом начале своей истории газобетону тяжело было конкурировать с кирпичом, который в силу своей прочности и долговечности доминировал на рынке столетиями. Однако начиная с 60-70-х годов прошлого века здания построенные из газобетона все чаще начали появляться на территории западной и северо-восточной Европы. От кирпичных сооружений их отличали сбалансированные характеристики прочности и теплоизоляционности. В дальнейшем это дало газобетону резкий старт на мировом рынке.
В наше время производство газобетона стало всеохватывающим и осуществляется выпуск теплоизоляционного (Д300, Д400), конструкционно-теплоизоляционного (д500, Д600), конструкционного (Д500-Д900) автоклавного ячеистого бетона. Каждый из видов отвечает определенным строительным потребностям и может быть использован для возведения того, или иного типа здания. Так, для 2х этажных домов с легким перекрытием подойдет плотность Д300, для 3х этажных — Д400. Для строительства зданий свыше 3х этажей применяется Д500 и более плотные марки газобетона. В целом можно сказать что прочности газоблока вполне достаточно для воплощения самых разных архитектурных идей.
Если посмотреть на характеристики доступных предложений газобетонного рынка можно увидеть определенную закономерность увеличения прочности в зависимости от плотности газобетонных блоков. Хотя прочность газоблока напрямую и не связана с маркой плотности. Здесь все строго определяется качеством самого производителя. Например, на рынке Украины есть газобетон Аэрок плотности Д300 с маркой прочности на сжатие B2,5 и газоблоки Стоунлайт Д400 с прочностью B2,0.
Что влияет на несущую способность газобетона?
Для более точного ответа, необходимо разобраться в таких вопросах как: что такое прочность на сжатие структуры стройматериала, какое расчетное сопротивление кладки и несущая способность построенного из него участка стены.
1) Прочность на сжатие газобетонных блоков обозначается английской буквой B с определенной цифрой. Например, класс прочности B2.0 говорит о том, что газобетон гарантированно выдерживает 20 кг на 1 см2. Более наглядно это значение отображается следующим образом: площадь газоблока с размером 60 х 30 см = 1800 см2 х 20 кг = 36 000 кг выдерживает 1 блок. Чтобы рассчитать, какую нагрузку выдерживает 1 метр погонный газобетона нужно: 100 см х 30 см х 20 кг = 60 тонн.
В реальности точное значение прочности на сжатие измеряется в экспериментальной лаборатории. Это происходит следующим образом: под пресс кладутся образцы газобетона в виде прямоугольников с размерами 100 мм х 100 мм. Затем на них с помощью пресса постепенно осуществляется давление до момента появления трещин. Если изделия проходят сертификацию, то после данной процедуры в документ заносятся фактические данные о полученном показателе прочности на сжатие.
2) Расчетное сопротивление газобетонной кладки определяется общепринятыми строительными стандартами. Оно сочетает в себе разные факторы, которые способны снизить прочность конструкции (например, внешних или внутренних стен). Благодаря данному значению закладывается запас прочности по СНиП. Для примера, расчетное сопротивление газосиликатной кладки с показателем прочности на сжатие B2,5 приравнивается к 1,0 МПа (или 10 кг на 1 см2). Нельзя не заметить, что данный показатель в 2 с половиной раза ниже, чем заявленная марка прочности газоблока. Поэтому, фактическая нагрузка, которую способен выдержать 1 метр погонный газобетонной кладки тоже будет ниже и составит примерно 30 т.
3) Несущая способность участка стены из газобетона очень сильно зависит от высоты, толщины стены и характера нагрузки на нее. Стоит сразу отметить что данный параметр всегда будет ниже прочности газоблока примерно в 5 раз. Например, возьмем стену из газобетона толщиной в 30 см положим на нее плиты перекрытия с глубиной опирания 12 см. В результате нагрузка будет распределятся не сбалансированно, поскольку здесь сама точка опирания сдвигается от цетра стены. Из-за чего в ее конструкции возникнет дополнительное напряжение, которое снизит несущую способность данного участка стены в 2 раза.
Выводы. Газобетон является очень прочным материалом. Но чтобы понять его несущую способность нужно учитывать выше указанные показатели и свойства. Перед выбором блоков из ячеистого бетона для строительства вашего дома необходимо проводить дополнительные расчеты и определить нагрузки других материалов на будущие газобетонные стены. Если вами был куплен качественный газобетон, а проект дома составлен грамотным специалистом, то такая конструкция будет достаточно надежной и прослужит до 100 лет.
Источник
Газобетон, как строительный материал, известен уже более века. Однако, для строительства частных домов его стали использовать сравнительно недавно. Интерес к этому материалу постоянно растет и главный вопрос — как выбрать газобетон и какие газобетонные блоки лучше использовать для строительства дома. От этого зависит не только прочность будущего здания, а и скорость его строительства, комфорт проживания в будущем.
Дома из газобетона можно по праву называть каменными, так как этот материал — искусственный камень, изготовленный по определенной технологии. При изготовлении газоблоков смесь цемента и кварцевого песка увлажняют и вводят специальные газообразующие составы. В результате при твердении бетона образуются поры, а сама структура получается легкой и прочной.
После схватывания смеси, ее разрезают на блоки заданного размера и сушат при естественных условиях или в автоклавах. Газобетонные строения имеют все плюсы каменных домов, а из-за особых свойств материала практически лишены минусов. Кроме того, здания приобретают дополнительные преимущества. Таким образом дом из газобетона стены 300 мм толщиной приобретает следующие качества:
- прочность, которая обусловлена способностью газобетона выдерживать достаточно высокие механические нагрузки;
- небольшой вес, так как наполненный газом бетон имеет малую плотность по сравнению с кирпичом или тяжелым бетоном;
- низкая теплопроводность стен, также обусловленная малой плотностью материала (у теплоизоляционных блоков теплопроводность даже ниже, чем у дерева);
- хорошая звукоизоляция, которая обеспечена большой акустической инерцией стен и высокой жесткостью конструкций (эти качества не допускают колебаний под действием звуковых волн, что препятствует прохождению звука сквозь стены);
- высокая скорость возведения зданий возможна потому, что газоблоки имеют большие размеры, которые очень точно выдерживаются при производстве, и легко обрабатываются ручными инструментами;
- экологичность домов обусловлена тем, что при производстве блоков применяется только чистый кварцевый песок и высококачественный цемент;
- морозостойкость конструкций, защищенных от прямого попадания осадков, достаточно высока;
- низкая возгораемость материала и высокая огнестойкость конструкций из него обусловлена применением негорючих составляющих при производстве газоблоков;
- низкая цена (1 м² стены из газобетона обходится дешевле, чем из кирпича)
Мнение эксперта
Виталий Кудряшов
строитель, начинающий автор
В домах из газобетона допускается устраивать как легкие перекрытия по деревянным или стальным балкам, так и массивные бетонные монолитные перекрытия. Прочность блоковых стен достаточна, чтобы выдержать большой вес.
Маркировка блоков из газобетона включает в себя прописную (заглавную) латинскую букву D и число, обозначающее плотность материала. Например, D500 — это обозначение газобетона плотностью 500 кг/м³. В зависимости от плотности материала, существуют три вида блоков:
- теплоизоляционные,
- конструкционно-теплоизоляционные,
- конструкционные.
В названии каждого вида угадывается и назначение блоков, заменять один вид другим не допускается. Использование блоков не по назначению грозит не только ухудшением характеристик здания, но и может привести к его разрушению.
К теплоизоляционным относятся газобетоны марок D300-D400. Ввиду малой плотности такой материал плохо пропускает тепло. Однако, большое количество пор уменьшает прочность материала.
Из теплоизоляционных газобетонных блоков делают ненесущие стены, которые при эксплуатации не воспринимают никакую нагрузку, кроме собственного веса. Такие стены выкладывают при строительстве зданий, имеющих пространственный каркас из железобетонных панелей или колонн. Блоками просто заполняют площади наружных стен, оставляя в них проемы для окон и дверей.
Стены каждого этажа опираются на перекрытия, максимальная высота такой стены не более высоты этажа. Поэтому блоки не подвергаются большим нагрузкам.
Этот вид газобетона, в который входят изделия марок D500-D900, применяют как универсальный. Блоки несут большую нагрузку, но теплопроводность их низкая. Из таких блоков можно выкладывать несущие стены двух- или трехэтажных домов, даже если перекрытия будут железобетонными, внутренние перегородки. В умеренном климате стены можно даже не утеплять. Блоки этого вида чаще других применяют при строительстве частных домов.
Плотность конструкционных бетонов равна или превышает значение 1000 кг/м³. К этому виду относятся блоки марки D1000 и выше. Такие материалы применяют для строительства несущих стен многоэтажных зданий. Из-за большой плотности материала наружные элементы зданий, построенных в холодном климате, нуждаются в обязательном утеплении.
Газобетон применяют не только для производства стеновых блоков. Из этого материала делают также армированные перемычки, балки и плиты для сборных перекрытий. А вот строить фундамент из газобетона нельзя. Даже при большой плотности, этот материал способен впитывать большое количество влаги, которая со временем его разрушает. По этой же причине необходимо производить горизонтальную гидроизоляцию между фундаментом и стенами из газобетона.
При проектировании зданий, выбор марки газобетонных блоков производят с учетом свойств и характеристик материала. Замена теплоизоляционных блоков конструкционными без изменения утепления существенно увеличит общую теплопроводность конструкций и в здании будет холодно зимой и жарко летом. Если же вместо конструкционных блоков использовать теплоизоляционные, несущие конструкции могут просто не выдержать нагрузки и разрушиться.
Заменять одни блоки другими того же вида, но иной марки также не рекомендуется. Если же такая необходимость возникла (из-за отсутствия нужной марки у поставщика), замена должна производиться только после уточняющего расчета конструкций на прочность и теплопроводность.
Мнение эксперта
Виталий Кудряшов
строитель, начинающий автор
Чем выше марка газобетона, тем выше цена 1 м³ материала. При больших объемах применение марки с излишней прочностью часто приводит к значительному удорожанию конструкции. К тому же, для блоков с большей плотностью необходимо более эффективное утепление, выбор марки «с запасом» не всегда бывает оправдан.
Чтобы решить, какой марки газоблок выбрать для строительства дома, необходимо учесть множество факторов. Для упрощения этой задачи рекомендации по выбору газобетона приведены в таблице.
Конструкции и элементы зданий | Марка газобетона | ||||||||||
D300 | D400 | D500 | D600 | D700 | D800 | D900 | D1000 | D1100 | D1200 | ||
Несущие стены малоэтажных домов без утепления | Здание с деревянными перекрытиями по балкам | — | — | + | + | — | — | — | — | — | — |
Здание с бетонными перекрытиями | — | — | + | — | — | — | — | — | — | — | |
Несущие стены малоэтажных домов утепленные | Здание с деревянными перекрытиями по балкам | — | — | + | + | + | — | — | — | — | — |
Здание с бетонными перекрытиями | — | — | + | + | + | + | — | — | — | — | |
Несущие стены многоэтажных домов | Здание с деревянными перекрытиями по балкам | — | — | — | — | — | — | — | + | + | + |
Здание с бетонными перекрытиями | — | — | — | — | — | — | — | — | + | + | |
Стены одноэтажных домов с деревянными перекрытиями | + | + | + | — | — | — | — | — | — | — | |
Стены каркасных зданий | + | + | — | — | — | — | — | — | — | — | |
Перегородки | + | + | + | — | — | — | — | — | — | — | |
Балки, перемычки армированные | — | — | — | + | + | + | + | + | + | + | |
Элементы перекрытий армированные | — | — | — | — | — | + | + | + | + | + |
Под несущей способностью газобетона понимают его свойство воспринимать нагрузку без разрушения. Зависит эта характеристика от прочности материала. А прочность зависит от плотности.
Газобетон воспринимает только сжимающие нагрузки. При растяжении он легко разрушается. Поэтому применяют этот материал в сжатых конструкциях. Для определения прочности на сжатие используют понятие класс бетона. Такое обозначение включает в себя прописную латинскую букву B с указанием после нее числа, указывающего размер максимальной сжимающей нагрузки в МПа, которую может выдержать материал. Например, если для газобетона марки D600 предусмотрен класс B2,5-B3,0, то материал гарантированно выдержит сжатие 2,5-3,0 МПа, а в более привычных единицах измерения значение составит примерно 25-30 кг/см². Это и есть несущая способность газобетона.
Плотность газобетона влияет не только на прочность, но и на теплоизоляционные свойства. Чем она больше, тем лучше бетон проводит тепло, и наоборот. В блоках малой плотности содержится больше воздуха, заключенного в закрытые поры, образованные при газообразовании. А воздух, как известно, лучший теплоизолятор.
Поры в газоблоке имеют практически одинаковые размеры, в отличие от пеноблока, в котором порообразование происходит от вспенивания воздухом. Плотность газобетона одинакова по всей его толщине и рассчитать тепловые параметры будущей конструкции можно точнее.
Расчет блоков на смятие производят, если на материал воздействует большая нагрузка, приложенная к малой площади. Такое условия возникают, например, при устройстве перекрытий, особенно, если они выполнены по балкам. В таком случае на небольшую опорную площадку балки приходится нагрузка, собранная по всей ее длине.
В местах опирания может произойти смятие газобетона, то есть необратимые разрушения внутри материала. Возникающие напряжения могут просто сминать блоки, они будут скалываться под действием нагрузки. Чтобы предотвратить это явление, необходим расчет.Для него достаточно определить величину напряжений, возникающих от приложенной нагрузки и сравнить ее с расчетным сопротивлением газобетона.
Напряжения равны отношению значения нагрузки к площади опирания. Например, если на деревянную балку приложен вес 2 тонны, то один ее конец будет давить на кладку газобетона с усилием в 1 тонну (1000 кг). При толщине балки 100 мм (10 см) и величине опирания 250 мм (25 см) на блоки из газобетона класса B1,5, площадь опорной площадки будет равна 250 кв. см.
Разделив величину нагрузки на площадь опорной площадки, можно получить значение напряжений 1000 кг/ 250 см² = 4 кг/ см².
Сравнивая величину напряжений с расчетным сопротивлением, которое для простоты можно принять, зная класс газобетона – 1,5 МПа или 15 кг/см², можно увидеть, что прочности материала будет достаточно для опирания балки перекрытия. Однако, этот пример приведен только для показа механизма расчета и не учитывает всей нагрузки на стену. В реальных условиях на газобетон давит еще и масса газобетона стен верхнего этажа, кровли и вес снеговой нагрузки. Поэтому давление на опорную площадку может превысить допустимую величину. При значении, равном 5 тонн, напряжения, возникающие в газобетоне, будут равны 20 кг/см². А это уже превысит значение расчетного сопротивления, обусловленного классом бетона B1,5.
И что же, отказаться от применения бетона этого класса? Вовсе нет, решение проблемы существует.
Как понятно из формулы расчета на напряжения, уменьшить их можно либо снизив нагрузку, либо увеличив площадь опоры. Снизить величину нагрузки вряд ли получится, так как она определена назначением и условиями эксплуатации здания. Но увеличить площадь опирания возможно. Для этого достаточно подложить под конец балки широкую доску. При ширине доски в 200 мм (20 см) площадь опоры увеличиться вдвое. Ровно в два раза уменьшаться и напряжения.
Конечно, в строительстве применяют другие способы решения этой задачи. При опирании деревянных, стальных балок или ребристых плит перекрытия по верхнему ряду газоблоков устраивают железобетонный пояс. А уже на него производят укладку балок или плит. Армированный железобетон распределяет усилие по большей площади, многократно уменьшая напряжения. В результате такого распределения один погонный метр стены из газобетона B1,5 толщиной 300 мм (30 см) может выдержать нагрузку более 40 тонн!
Проверить не сложно, умножив расчетное сопротивление на площадь опирания 15 кг/см². * (100 см * 30 см) = 45 000 кг.
Для частного дома этого более, чем достаточно. Если же в качестве перекрытия рассматривается монолитная железобетонная конструкция, то при правильном армировании распределяющий усилия пояс делать не нужно. Край монолитной плиты равномерно распределит их по толщине блока.
Источник