Формула расчетного сопротивления растяжению
Любая бетонная конструкция должна переносить определенные в технической документации нагрузки в течение длительного времени без разрушений. В строительных проектах указываются основные характеристики, к которым относятся плотность, показатели расчетного сопротивления бетона, морозоустойчивость, водонепроницаемость. Проблема состоит в том, что даже самый качественный бетон неоднороден. Элементы имеют различные геометрические размеры и сечения, поэтому разные участки сооружения могут иметь неодинаковые свойства. Для уточнения характеристик материала вводится методика вычисления прочности.
Что такое расчетное сопротивление?
Расчетное сопротивление бетонной смеси – характеристика отражающая свойство материала противостоять внешним механическим нагрузкам. Его применяют при проектировании зданий и сооружений. Данный показатель получают из нормативных значений противодействия конкретной марки раствора делением на специальный коэффициент.
Этот коэффициент, применяемый для вычисления расчетного сопротивления бетона на сжатие обозначается γb и может принимать значения:
- 1,3 – для максимальных возможных величин по несущей способности;
- 1 – для максимальных значений по пригодности к эксплуатации.
Коэффициенты надежности материала при механическом растяжении обозначаются γbt, они могут быть равны:
- 1,5 – для максимальных показателей несущей способности во время определения класса на сжатие;
- 1,3 – для максимальных значений несущей способности на осевое растяжение;
- 1 – для максимальных величин по пригодности к эксплуатации.
Классы бетонов обозначаются от В10 до В60, значения их нормативного противодействия приводятся в специальных таблицах.
Как получить расчетное сопротивление?
Для получения расчетного сопротивления бетона по осевому сжатию определяется класс материала, из таблицы берутся его нормативные данные и производится вычисление по формуле:
Rb=Rbn/γb,
где Rb – расчетные данные на осевое сжатие, множитель Rbn – нормативные , γb – коэффициент.
Аналогично рассчитывают расчетное сопротивление бетона осевому растяжению:
Rbt=Rbtn/γbt,
где Rbt – расчетные значения на осевое растяжение, множитель Rbtn – нормативные показатели на растяжение, γbt – коэффициент для растяжения.
Учитывая условия, в которых будут эксплуатироваться бетонные конструкции, вводятся и другие коэффициенты γbi, учитывающие эти особенности:
- для непродолжительных статических нагрузок 1;
- для длительных статических нагрузок 0,9;
- элементы, заливаемые вертикально 0,9;
- коэффициенты, отражающие климатические особенности, назначение сооружения, площадь сечения указываются в документации отдельно.
Нормативное сопротивление
До 2001 года единственной характеристикой бетона указывающей на противодействие механической силе, считалась марка, обозначавшаяся буквой «М». Теперь, согласно СНиП 2.03.01 введена другая характеристика, так называемый класс прочности, обозначающаяся буквой «В». Для определения свойств железобетонных и бетонных конструкций были предложены нормативы, согласно СП 52-101-2003.
Для определения класса раствор заливают в куб с ребром 150 мм. Уплотняют его в форме и дают полностью затвердеть при температуре 18-20ºС в течение 28 суток. После этого образец поступает на испытание, и разрушается на специальном прессе. Сопротивление бетона осевой нагрузке, выраженное в МПа и является свойством, по которому определяется данная характеристика. Иногда для определения класса берется призменный образец, высота которого в четыре раза больше ребра основания.
Дополнительно образец подвергается проверке на осевое растяжение, который тоже необходимо учитывать при проведении вычислений.
При правильном определении класса не требуется делать дополнительных испытаний, поскольку они уже занесены в специализированные таблицы.
Используя эти таблицы можно, имея данные на сжатие, сразу определить показатели и на растяжение. По ним ясно видно – этот параметр для любого бетона на растяжение гораздо меньше, чем на сжатие, это обязательно учитывается при проектировании.
Эти параметры для различного класса прочности сводятся в специальную таблицу. Значения могут меняться в зависимости от условий определяемых соответствующими коэффициентами:
Из таблицы видно, что расчетное значение ниже нормативного, поскольку учитывает сторонние факторы, тип воздействия на бетонную конструкцию, возможную неоднородность материала, центр тяжести контура.
При определении противодействия бетона силовому воздействию учитывается его деформация. Для этого берется начальный параметр данной величины и делится на коэффициент, включающий в себя ползучесть, а также поперечную деформацию массива, его температурную деформацию в диапазоне -40 — +50ºС. При вычислении свойств напряженно деформированного элемента используют специальные диаграммы, демонстрирующие предельную нагрузку в зависимости от сечений и расположения детали и вида материала. Эта методика позволяет рассчитывать факторы, приводящие к появлению трещин.
График Зависимости напряжений от деформаций
При определении характеристик железобетонных конструкций применяют методику моделирования наклонных сечений. Учитывается толщина и тип арматуры, отдельно рассчитывается ее прочность.
Заключение
Сопротивление бетона рассчитывается в зависимости от действия на него различных сил, которые могут быть сжимающими, поперечными, изгибающими, а также под местным сжатием. Для внецентренно сжатых и растянутых элементов, находящихся под изгибом, момент рассчитывается для сечений, перпендикулярных их продольной оси.
Для элементов с сечениями в виде прямоугольника, квадрата или тавра применяются формулы, предельной нагрузки каждого элемента, для других сечений используются специальные нелинейные диаграммы.
Расчетное сопротивление позволит подобрать класс прочности и марку этого материала для получения оптимальных эксплуатационных свойств массива, элемента или детали. В отличие от нормативных показателей, данные учитывают геометрические особенности, условия эксплуатации, виды деформаций. Вводятся коэффициенты надежности по бетону, разновидности используемой арматуры и другие характеристики, влияющие на конечную прочность зданий и сооружений, где применяется литой бетон или конструктивные элементы из этого материла.
Источник
При расчёте на прочность деревянных конструкций необходимо знать его расчётное сопротивление. Для деревянных конструкций есть несколько типов расчётных сопротивлений: на изгиб, сжатие, смятие, скол вдоль и поперёк волокон, растяжение вдоль и поперёк волокон, сжатие и смятие поперек волокон. Вначале рассмотрим, как вычисляется расчётное сопротивление деревянных конструкций, затем рассмотрим его расчёт на примере вычисления расчётного сопротивления на изгиб для доски балки перекрытия.
Методика расчёта взята из СП 64.133330.2017, который можно скачать по этой ссылке.
Расчётное сопротивление древесины определяем по формуле 1 СП
64.13330.2017:
где RA
– расчётное сопротивление древесины согласно таблицы 3 СП 64.13330.2017 в
зависимости от сечения и сорта древесины
Таблица 3 СП 64.13330.2017:
Напряженное состояние и характеристика элементов | Расчетное сопротивление, МПа, для сортов древесины | |||
---|---|---|---|---|
Обозначение | 1 | 2 | 3 | |
1 Изгиб, сжатие и смятие вдоль волокон: | ||||
а) элементы прямоугольного сечения [за исключением указанных в б), в)] высотой не более 50 см. При высоте сечения более 50 см [см. 6.9в)] | 21 | 19,5 | 13 | |
б) элементы прямоугольного сечения шириной от 11 до 13 см при высоте сечения от 11 до 50 см | 22,5 | 21 | 15 | |
в) элементы прямоугольного сечения шириной более 13 см при высоте сечения от 13 до 50 см | 24 | 22,5 | 16,5 | |
г) элементы из круглых лесоматериалов без врезок в расчетном сечении | — | 24 | 15 | |
2 Растяжение вдоль волокон: | ||||
а) элементы из цельной древесины | 15 | 10,5 | — | |
б) клееные элементы | 18 | 13,5 | — | |
3 Сжатие и смятие по всей площади поперек волокон | 2,7 | 2,7 | 2,7 | |
4 Смятие поперек волокон местное: | ||||
а) в опорных частях конструкций, лобовых врубках и узловых примыканиях элементов | 4,5 | 4,5 | 4,5 | |
б) под шайбами при углах смятия от 90° до 60° | 6 | 6 | 6 | |
5 Скалывание вдоль волокон: | ||||
а) при изгибе элементов из цельной древесины | 2,7 | 2,4 | 2,4 | |
б) при изгибе клееных элементов | 2,4 | 2,25 | 2,25 | |
в) в лобовых врубках для максимального напряжения | 3,6 | 3,2 | 3,2 | |
г) местное в клеевых соединениях для максимального напряжения | 3,2 | 3,2 | 3,2 | |
6 Скалывание поперек волокон в соединениях: | ||||
а) элементов из цельной древесины | 1,5 | 1,2 | 0,9 | |
б) клееных элементов | 1,05 | 1,05 | 0,9 | |
7 Растяжение поперек волокон элементов из клееной древесины | 0,23 | 0,15 | 0,12 | |
8 Срез под углом к волокнам 45° | 9 | 7,5 | 6 | |
То же 90° | 16,5 | 13,5 | 12 | |
Примечания: | ||||
1 В конструкциях построечного изготовления величины расчетных сопротивлений на растяжение, принятые по пункту 2а) настоящей таблицы, следует снижать на 30%. | ||||
2 Расчетное сопротивление изгибу для элементов настила и обрешетки под кровлю из древесины 3-го сорта следует принимать равным 13 МПа. |
Расчетные сопротивления для
других пород древесины устанавливают путем умножения величин, приведенных в
таблице 3, на переходные коэффициенты mп, указанные
в таблице 5.
Таблица 5 СП 64.13330.2017
Древесная порода | Коэффициент mп для расчетных сопротивлений | ||
---|---|---|---|
растяжению, изгибу, сжатию и смятию вдоль волокон RP , RИ , RС ,RСМ | сжатию и смятию поперек волокон RС90 , RСМ90 | скалыванию RСК | |
Хвойные | |||
1 Лиственница, кроме европейской | 1,2 | 1,2 | 1 |
2 Кедр сибирский, кроме кедра Красноярского края | 0,9 | 0,9 | 0,9 |
3 Кедр Красноярского края | 0,65 | 0,65 | 0,65 |
4 Пихта | 0,8 | 0,8 | 0,8 |
Твердые лиственные | |||
5 Дуб | 1,3 | 2 | 1,3 |
6 Ясень, клен, граб | 1,3 | 2 | 1,6 |
7 Акация | 1,5 | 2,2 | 1,8 |
8 Береза, бук | 1,1 | 1,6 | 1,3 |
9 Вяз, ильм | 1 | 1,6 | 1 |
Мягкие лиственные | |||
10 Ольха, липа, осина, тополь | 0,8 | 1 | 0,8 |
Примечание – Коэффициенты mп, указанные в таблице, для конструкций опор воздушных линий электропередачи, изготавливаемых из не пропитанной антисептиками лиственницы (при влажности 25%), умножаются на коэффициент 0,85. |
mДЛ – коэффициент
длительной прочности, принимаемый по таблице 4 СП 64.13330.2017 в зависимости и
того, для чего служит конструкция
Таблица 4 СП 64.13330.2017
Обозначение режимов нагружения | Характеристика режимов нагружения | Приведенное расчетное время действия нагрузки, с | Коэффициент длительной прочности mДЛ |
А | Линейно возрастающая нагрузка при стандартных машинных испытаниях | 1-10 | 1,0 |
Б | Совместное действие постоянной и длительной временной нагрузок, напряжение от которых превышает 80% полного напряжения в элементах конструкций от всех нагрузок | 108-109 | 0,53 |
В | Совместное действие постоянной и кратковременной снеговой нагрузок | 106-107 | 0,66 |
Г | Совместное действие постоянной и кратковременной ветровой и (или) монтажной нагрузок | 103-104 | 0,8 |
Д | Совместное действие постоянной и сейсмической нагрузок | 10-102 | 0,92 |
Е | Действие импульсивных и ударных нагрузок | 10-1-10-8 | 1,1-1,35 |
Ж | Совместное действие постоянной и кратковременной снеговой нагрузок в условиях пожара | 103-104 | 0,8 |
И | Для опор воздушных линий электропередачи — гололедная, монтажная, ветровая при гололеде, от тяжения проводов при температуре ниже среднегодовой | 104-105 | 0,85 |
К | Для опор воздушных линий электропередачи — при обрыве проводов и тросов | 10-1-10-2 | 1,1 |
Пmi
– произведение коэффициентов условий работ согласно п.6.9 СП 64.13330.2017.
Рассмотрим все коэффициенты:
п.6.9 а) для различных условий эксплуатации конструкций –
коэффициент mВ, указанный в таблице
9:
Таблица 9 СП 64.13330.2017
Условие эксплуатации (таблица 1) | 1А и 1 | 2 | 3 | 4 |
Коэффициент mВ | 1 | 0,9 | 0,85 | 0,75 |
Условия эксплуатации указаны в таблице 1 СП 64.13330.2017
Таблица 1 СП 64.13330.2017
Класс условий эксплуатации | Эксплуатационная влажность древесины, % | Максимальная относительная влажность воздуха при температуре 20°С, % | |
1 (сухой) | 1а | Не более 8 | 40 |
1б | Не более 10 | 50 | |
2 (нормальный) | Не более 12 | 65 | |
3 (влажный) | Не более 15 | 75 | |
4 (мокрый) | 4а | Не более 20 | 85 |
4б | Более 20 | Более 85 | |
Примечания 1 Допускается в качестве «эксплуатационной» принимать «равновесную» влажность древесины (рисунок А.1 Приложения А СП 64.13330.2017). 2 Допускается кратковременное превышение максимальной влажности в течение 2-3 нед. в году. |
п.6.9 б) конструкций,
эксплуатируемых при установившейся температуре воздуха ниже плюс 35°С, —
коэффициент mТ=1; при температуре
плюс 50°С – коэффициент mТ=0,8. Для промежуточных
значений температуры коэффициент принимают по интерполяции;
п.6.9 в) изгибаемых,
внецентренно сжатых, сжато-изгибаемых и сжатых клееных элементов прямоугольного
сечения высотой более 50 см значения расчетных сопротивлений изгибу и сжатию
вдоль волокон – коэффициент mб,
указанный в таблице 10:
Таблица 10 СП 64.13330.2017
Высота сечения, см | 50 и менее | 60 | 70 | 80 | 100 | 120 и более |
Коэффициент mб | 1 | 0,96 | 0,93 | 0,90 | 0,85 | 0,8 |
п.6.9 г) растянутых элементов с
ослаблением в расчетном сечении и изгибаемых элементов из круглых
лесоматериалов с подрезкой в расчетном сечении – коэффициент mо=0,8;
п.6.9 д) элементов, подвергнутых глубокой пропитке
антипиренами под давлением, — коэффициент mа=0,9;
п.6.9 е) изгибаемых,
внецентренно сжатых, сжато-изгибаемых и сжатых клееных деревянных элементов, в
зависимости от толщины слоев, значения расчетных сопротивлений изгибу,
скалыванию и сжатию вдоль волокон — коэффициент mСД,
указанный в таблице 11:
Таблица 11 СП 64.13330.2017
Толщина слоя, мм | 10 и менее | 19 | 26 | 33 | 42 |
Коэффициент mСД | 1,2 | 1,1 | 1,05 | 1,0 | 0,95 |
п.6.9 ж) гнутых элементов
конструкций значения расчетных сопротивлений растяжению, сжатию и изгибу —
коэффициент mГН, указанный в таблице
12:
Таблица 12 СП 64.13330.2017
Напряженное состояние | Обозначение расчетных сопротивлений | Коэффициент mГН при отношении rK/a | |||
150 | 200 | 250 | 500 и более | ||
Сжатие и изгиб | Rc, Rи | 0,8 | 0,9 | 1 | 1 |
Растяжение | Rр | 0,6 | 0,7 | 0,8 | 1 |
Примечание — rK — радиус кривизны гнутой доски или бруска; a — толщина гнутой доски или бруска в радиальном направлении. |
п. 6.9 и) в зависимости от срока
службы – коэффициент mc.c, указанный в таблице 13:
Таблица 13 СП 64.13330.2017
Вид напряженного состояния | Значение коэффициента mc.c при сроке службы сооружения | ||
≤50 лет | 75 лет | 100 лет и более | |
Изгиб, сжатие, смятие вдоль и поперек волокон древесины | 1,0 | 0,9 | 0,8 |
Растяжение и скалывание вдоль волокон древесины | 1,0 | 0,85 | 0,7 |
Растяжение поперек волокон древесины | 1,0 | 0,8 | 0,5 |
Примечание — Значение коэффициента mc.c для промежуточных сроков службы сооружения принимаются по линейной интерполяции. |
п. 6.9 к) для смятия поперек
волокон при режимах нагружения Г-К (таблица 4, приведена выше) — коэффициент mcм=1,15.
Пример расчёта
расчётного сопротивления
Для примера рассмотрим расчёт расчётного сопротивления на
изгиб для балки из доски сечением 50х200 из сосны 1-го сорта.
RAИ=21
МПа (п.1а таблицы 30)
mДЛ =0,53 (режим Б
таблицы 4)
mв=0,9 коэффициент для
условий эксплуатации подбирается по таблице 9 СП 64.13330.2017 согласно
условиям эксплуатации по таблице 1 СП 64.13330.2017. При влажности воздуха до
65% (для жилых помещений) данный коэффициент равен 0,9
mT =1– коэффициент
условий работы при температуре эксплуатации для температуры ниже +35°С равен
единице.
mб =1 коэффициент условий
работы в зависимости от высоты сечения при высоте сечения ниже 50 см равен 1.
mо – не применяется т.к.
наша конструкция не относится к ситуациям п.6.9 г.
mа— не применяется т.к.
доску мы не пропитываем антипиренами;
mСД – не применяется т.к.
данный коэффициент используется для клееных элементов;
mГН – не применяется т.к.
данный коэффициент используется для гнутых элементов;
mc.c =1
коэффициент условий работы для срока службы менее 50 лет. Срок службы здания
регламентирован ГОСТ 27751-2014 Надежность строительных конструкций и оснований
Таблица 1. Для здания и сооружений массового строительства в обычных условиях
эксплуатации (здания жилищно-гражданского и производственного строительства)
принимается не менее 50 лет.
mcм – не применяется т.к. в нашем
случае режим нагружения будет Б.
Итого Пmi
равен:
Пmi=
mв*mT*mб*mc.c =0,9*1*1*1=0,9
Вычисляем расчётное сопротивление изгибу:
Rи=RAИ *mДЛ*Пmi=21*0,53*0,9=10,017 МПа
Источник
2.4. РАСЧЕТЫ НА ПРОЧНОСТЬ ПРИ РАСТЯЖЕНИИ Основной задачей расчета конструкции на растяжение является обеспечение ее прочности в условиях эксплуатации. Условие прочности – оценка прочности элемента конструкции, сводящаяся к сравнению расчетных напряжений с допускаемыми: σ≤рσ[р ]; σ с ≤[ с],σ (2.9) где σр и σс – наибольшие расчетные растягивающие и сжимающие напряжения; [σр] и [σс] – допускаемые напряжения при растяжении и сжатии. Допускаемое напряжение – наибольшее напряжение, которое можно допустить в элементе конструкции при условии его безопасной, долговечной и надежной работы: Здесь σпред – предельное напряжение (состояние), при котором конструкция перестает удовлетворять эксплуатационным требованиям; им мо- гут быть предел текучести, предел прочности, предел выносливости, пре- дел ползучести и др. Для конструкций из пластичных материалов при определении допускаемых напряжений используют предел текучести σт (рис. 2.4, а). Это связано с тем, что в случае его превышения деформации резко возрастают при незначительном увеличении нагрузки и конструкция перестает удовлетворять условиям эксплуатации. Допускаемое напряжение в этом случае определяют как Для хрупких материалов (чугун, бетон, керамика) где σвр и σвс – пределы прочности при растяжении и сжатии (рис. 2.4, б). Здесь [n] – нормативный коэффициент запаса прочности. В зависимости от той предельной характеристики, с которой сравнивают расчетное напряжение σ, различают [nт] – нормативный коэффициент запаса прочности по отношению к пределу текучести σт и [nв] – нормативный коэффициент запаса прочности по отношению к пределу прочности σв. Запас прочности – отношение предельно допустимой теоретической нагрузки к той нагрузке, при которой возможна безопасная работа конструкции с учетом случайных перегрузок, непредвиденных дефектов и недостоверности исходных данных для теоретических расчетов. Нормативные коэффициенты запаса прочности зависят: − от класса конструкции (капитальная, временная), − намечаемого срока эксплуатации, − условий эксплуатации (радиация, коррозия, загнивание), − вида нагружения (статическое, циклическое, ударные нагрузки) − неточности задания величины внешних нагрузок, − неточности расчетных схем и приближенности методов расчета − и других факторов. Нормативный коэффициент запаса прочности не может быть единым на все случаи жизни. В каждой отрасли машиностроения сложились свои подходы, методы проектирования и приемы технологии. В изделиях общего машиностроения принимают [nт] = 1,3 – 2,2; [nв] = 3 – 5. Вероятность выхода из строя приближенно можно оценить с помощью коэффициента запаса в условии прочности: n = 1 соответствует вероятности невыхода из строя 50 %; n = 1,2 соответствует вероятности невыхода из строя 90 %; n = 1,5 соответствует вероятности невыхода из строя 99 %; n = 2 соответствует вероятности невыхода из строя 99,9 %. Для неответственных деталей n = 2 много. Для ответственных – мало. Так для каната подъемного лифта это означает на 1000 подъемов одно падение. При расчете конструкций на прочность встречаются три вида задач, которые вытекают из условия прочности а) поверочный расчет (проверка прочности). Известны усилие N и площадь A. Вычисляют σ = N/A и, сравнивая его с предельным σт или σв (для пластичного и хрупкого материалов соответственно), находят фактический коэффициент запаса прочности который затем сопоставляют с нормативным [n]; б) проектный расчет (подбор сечения). Известны внутреннее усилие N и допускаемое напряжение [σ]. Определяют требуемую площадь поперечного сечения стержня в) определение грузоподъемности (несущей способности). Известны площадь А и допускаемое напряжение [σ]. Вычисляют внутреннее усилие N≤N[ ] = ⋅[σ]A, (2.15) а затем в соответствие со схемой нагружения – величину внешней нагрузки F ≤ [F].
Источник