Динамическая прочность при растяжении

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 24 сентября 2019; проверки требуют 8 правок.

Преде́л про́чности — механическое напряжение , выше которого происходит разрушение материала. Иначе говоря, это пороговая величина, превышая которую механическое напряжение разрушит некое тело из конкретного материала. Следует различать статический и динамический пределы прочности. Также различают пределы прочности на сжатие и растяжение.

Величины предела прочности[править | править код]

Статический предел прочности[править | править код]

Статический предел прочности, также часто называемый просто пределом прочности есть пороговая величина постоянного механического напряжения, превышая который постоянное механическое напряжение разрушит некое тело из конкретного материала. Согласно ГОСТ 1497-84 «Методы испытаний на растяжение», более корректным термином является временное сопротивление разрушению — напряжение, соответствующее наибольшему усилию, предшествующему разрыву образца при (статических) механических испытаниях. Термин происходит от представления, по которому материал может бесконечно долго выдержать любую статическую нагрузку, если она создаёт напряжения, меньшие статического предела прочности, то есть не превышающие временное сопротивление. При нагрузке, соответствующей временному сопротивлению (или даже превышающей её — в реальных и квазистатических испытаниях), материал разрушится (произойдет дробление испытываемого образца на несколько частей) спустя какой-то конечный промежуток времени (возможно, что и практически сразу, — то есть не дольше чем за 10 с).

Динамический предел прочности[править | править код]

Динамический предел прочности есть пороговая величина переменного механического напряжения (например при ударном воздействии), превышая которую переменное механическое напряжение разрушит тело из конкретного материала. В случае динамического воздействия на это тело время его нагружения часто не превышает нескольких секунд от начала нагружения до момента разрушения. В такой ситуации соответствующая характеристика называется также условно-мгновенным пределом прочности, или хрупко-кратковременным пределом прочности.

Предел прочности на сжатие[править | править код]

Предел прочности на сжатие есть пороговая величина постоянного (для статического предела прочности) или, соответственно, переменного (для динамического предела прочности) механического напряжения, превышая который механическое напряжение в результате (за конечный достаточно короткий промежуток времени) сожмет тело из конкретного материала — тело разрушится или неприемлемо деформируется.

Предел прочности на растяжение[править | править код]

Предел прочности на растяжение есть пороговая величина постоянного (для статического предела прочности) или, соответственно, переменного (для динамического предела прочности) механического напряжения, превышая который механическое напряжение в результате (за конечный достаточно короткий промежуток времени) разорвет тело из конкретного материала. (На практике, для детали какой либо конструкции достаточно и неприемлемого истончения детали.)

Другие прочностные параметры[править | править код]

Мерами прочности также могут быть предел текучести, предел пропорциональности, предел упругости, предел выносливости, предел прочности на сдвиг и др. так как для выхода конкретной детали из строя (приведения детали в негодное к использованию состояние) часто достаточно и чрезмерно большого изменения размеров детали. При этом деталь может и не разрушиться, а лишь только деформироваться. Эти показатели практически никогда не подразумеваются под термином «предел прочности».

Прочностные особенности некоторых материалов[править | править код]

Значения предельных напряжений (пределов прочности) на растяжение и на сжатие у многих материалов обычно различаются.

У композитов предел прочности на растяжение обычно больше предела прочности на сжатие. Для керамики (и других хрупких материалов) — наоборот, характерно многократное превышение пределом прочности на сжатие предела прочности на растяжение. Для металлов, металлических сплавов, многих пластиков, как правило, характерно равенство предела прочности на сжатие и предела прочности на растяжение. В большей степени это связано не с физикой материалов, а с особенностями нагружения, схемами напряженного состояния при испытаниях и с возможностью пластической деформации перед разрушением.

Прочность твёрдых тел обусловлена в конечном счёте силами взаимодействия между атомами, составляющими тело. При увеличении расстояния между атомами они начинают притягиваться, причем на критическом расстоянии сила притяжения по абсолютной величине максимальна. Напряжение, отвечающее этой силе, называется теоретической прочностью на растяжение и составляет σтеор ≈ 0,1E, где E — модуль Юнга . Однако на практике наблюдается разрушение материалов значительно раньше, это объясняется неоднородностями структуры тела, из-за которых нагрузка распределяется неравномерно.

Некоторые значения прочности на растяжение в МПа (1 кгс/мм² = 100 кгс/см² ≈ 10 МН/м² = 10 МПа) (1 МПа = 1 Н/мм² ≈ 10 кгс/см²)[1]:

Материалы, МПа
Бор57000,083
Графит (нитевидный кристалл)24010,024
Сталь 60С2А рессорно-пружинная1570 (после термообработки)0,0074
Сапфир (нитевидный кристалл)15000,028
Железо (нитевидный кристалл)13000,044
Тянутая проволока из высокоуглеродистой стали4200,02
Тянутая проволока из вольфрама3800,009
Стекловолокно3600,035
Сталь Ст0 обыкновенного качества3000,0017
Нейлон500,0025

См. также[править | править код]

  • Теоретический предел прочности
Читайте также:  На запястья от растяжения

Примечания[править | править код]

  1. ↑ Диапазон пределов прочности для стали составляет 500—3000 МПа (Б. Н. Арзамасов, В. А. Брострем, Н. А. Буше и др. Конструкционные материалы. Справочник. — М.: Машиностроение, 1990. — 688 с.).

Источник

Прочность – свойство материала сопротивляться пластической деформации и разрушению под действием внешних сил.

В зависимости от способа приложения нагрузки различают прочность при растяжении, изгибе, сжатии, кручении, прочность на срез, при действии циклической или знакопеременной нагрузки – усталостную прочность и др.

В зависимости от скорости приложения нагрузки различают

статическую прочность, характеристики которой определяются при медленном равномерном возрастании нагрузки;

динамическую прочность, характеристики которой определяются при ударном приложении нагрузки.

В зависимости от температуры испытания различают

прочность при температуре ( ) °C, низкотемпературную прочность и прочность при повышенной и высокой температуре.

1.1. Определение характеристик статической прочности

Основными характеристиками статической прочности материалов являются предел текучести σт, который характеризует способность материала
сопротивляться пластической деформации, и предел прочности при растяжении (временное сопротивление) σв. Значения названных характеристик определяют по ГОСТ 1497-84 (Металлы. Методы испытаний на растяжение). Для испытаний применяют специальные цилиндрические или плоские стандартные разрывные образцы (рис. 1), которые изготавливаются на металлорежущих станках из заготовок. Правила вырезки этих заготовок из изделий указаны в стандартах. Образец закрепляют в испытательной машине, схема которой приведена на рис. 2, и нагружают.

Динамическая прочность при растяжении

А б

Рис. 1. Стандартные образцы для испытания на статическое осевое
растяжение: а – круглые образцы; б – плоские образцы с головками

Динамическая прочность при растяжении

На рис. 2 обозначено: 1 – собственно машина; 2 – винт грузовой; 3 – нижний
захват (активный); 4 – образец; 5 – верхний захват (пассивный); 6 – силоизмерительный датчик; 7 – индикатор нагрузок;
8 – привод нагружающего механизма.

Результаты испытаний фиксируются на диаграмме растяжения (график зависимости напряжения σ от деформации ε, рис. 3). При этом силу Р, растягивающую образец, относят к первоначальной площади поперечного сечения F0 (это отношение называется напряжением σ), а удлинение образца Dl – к первоначальной длине расчетной части образца l0:

σ = P / F0, (1)

ε = Δl / l0, (2)

Динамическая прочность при растяжении Предел текучести физический (нижний предел текучести) σт – наименьшее напряжение, соответствующее растягивающему усилию Рт, при котором образец деформируется без заметного увеличения этого усилия, Н/м2 (МПа, кгс/мм2):

σт = Рт / F0, (3)

где Рт – наименьшая нагрузка, соответствующая стадии текучести материала на диаграмме растяжения образца, Н (кгс);

F0– начальная площадь поперечного сечения образца, м2 (мм2).

Предел прочности при растяжении (временное сопротивление) σв – напряжение, соответствующее наибольшему усилию Рmax, предшествующему разрыву образца, Н/м2 (МПа, кгс/мм2):

σв = Рmax / F0, (4)

1.2. Определение характеристик прочности при циклическом нагружении
(испытания на усталость)

Процесс постепенного накопления напряжения в металле при действии циклических нагрузок, приводящий к образованию трещин и разрушению, называется усталостью. Разрушение таких деталей, как валы, рессоры, рельсы, шестерни и др., в эксплуатации происходит в результате циклического нагружения при напряжении, значительно меньшем, чем временное сопротивление металла. Свойство металла выдерживать большое число циклов переменных напряжений, т. е. противостоять усталости, называется выносливостью, или циклической (усталостной) прочностью.

Усталостная прочность – способность металла сопротивляться упругим и пластическим деформациям при переменных нагрузках, она характеризуется наибольшим напряжением σ-1, которое выдерживает металл, не разрушаясь при бесконечно большом числе циклов нагружения, и называется пределом усталости, или пределом выносливости. Для оценки способности материала сопротивляться действию циклических напряжений и исследования различных стадий усталостного разрушения в технике широко используют кривые усталости (рис. 4), которые показывают связь между уровнем переменного напряжения σ и числом циклов до разрушения N (кривые Велера).

Для углеродистой конструкционной стали предел усталости условно принимается равным (0,4 – 0,5) σв.

Значение предела выносливости зависит от многих факторов: степени загрязненности металла неметаллическими включениями, макро- и микроструктуры металла, состояния поверхности, формы и размеров детали и др.

Важной характеристикой конструктивной прочности (надежности) металла является живучесть при циклическом нагружении.Живучесть − это способность металла работать в поврежденном состоянии после образования трещины до полного разрушения, она измеряется числом циклов нагружения или скоростью развития трещины усталости при данном напряжении. Живучесть является самостоятельным свойством, которое не зависит от других свойств металла. Живучесть имеет важное значение для оценки работоспособности деталей, работа которых контролируется различными методами дефектоскопии. Чем меньше скорость развития трещины усталости, тем легче ее обнаружить.

1.3. Определение характеристик динамической прочности

Основной характеристикой динамической прочности материалов является ударная вязкостьKCUилиKCV, Дж/м2 (кгс∙м/см2).

В процессе эксплуатации многие детали машин испытывают динами-ческие (ударные) нагрузки. Для определения стойкости металла к удару и одновременной оценки его склонности к хрупкому разрушению проводят испытания на ударный изгиб по ГОСТ 9454-78 (Металлы. Метод испытания на ударный изгиб при пониженных, комнатной и повышенных температурах).
Метод основан на разрушении стандартного образца для испытания на динамическую прочность (рис. 5) с концентратором посередине одним ударом маятникового копра. Концы образца располагают на опорах (схема испытания представлена на рис. 6). При испытании определяют полную работу, затраченную на разрушение образца ударным изгибом (работу удара), по значению которой рассчитывается ударная вязкость.

Читайте также:  Условие прочности при растяжении имеет вид

Динамическая прочность при растяжении Ударную вязкость (KC) в Дж/см2 (кгс·м/см2) вычисляют по формуле:

KC= K/ S0, (5)

где K – работа удара, Дж (кгс·м);

S0– начальная площадь поперечного сечения образца в месте концентратора, см2, вычисляемая по формуле:

S0= H1∙ B, (6)

где Н1 – начальная высота рабочей
части образца, см;

B − начальная ширина образца, см.

Для определения ударной вязкости применяют образцы (обычно размером 10 ´ 10 ´ 55 мм) с U— или V-образным надрезом. Надрез посередине образца называется концентратором. Испытания проводят на маятниковом копре 1 (рис. 6, а). Маятник 2, падая с определенной высоты, разрушает образец 3, свободно установленный на двух опорах копра (рис. 6, б). Работа удара K (Дж или кгс×м), затраченная на излом (разрушение) образца, фиксируется стрелкой на шкале копра и определяется из разности энергии маятника в положении его до и после удара. Ее можно определить по формуле:

К = G(h1 – h2), (7)

где G – сила тяжести, Н, G = mg;

m – масса маятника, кг;

h1 – исходная высота подъема маятника, м;

h2 – высота подъема маятника после разрушения образца, м.

Если образец имеет U-образный надрез, то в обозначение ударной вяз-кости добавляется буква U (КСU), а если V-образный, то добавляется буква
V (КСV).

Динамическая прочность при растяжении

А б

Рис. 6. Схема испытаний на ударную вязкость:

а – маятниковый копер; б – установка образца

Для обозначения работы удара и ударной вязкости при пониженной и повышенной температуре вводится цифровой индекс, указывающий температуру испытания. Цифровой индекс ставят вверху после буквенных составляющих, например: KCV−40– работа удара, определенная на образце с концентратором вида V при температуре минус 40 °С; KCU +100– ударная вязкость, определенная на образце с концентратором вида U при температуре плюс 100 °С.

Определение ударной вязкости является наиболее простым и показательным способом оценки сопротивляемости к хрупкости при работе в условиях низких температур, называемой хладноломкостью. Практически хладноломкость определяют при испытании на удар серии образцов при нескольких понижающихся значениях температуры (от комнатной до минус 100 °С). Результаты испытаний наносят на график в координатах «ударная вязкость – температура испытания» (рис. 7). Температура, ниже которой происходит падение ударной вязкости, называется критической температурой хрупкости, или порогом хладноломкости. Порог хладноломкости − температура, при которой металл переходит из вязкого состояния в хрупкое. Верхним порогом хладноломкости является температура tв, при которой доля вязкой (волокнистой, матовой) составляющей в изломе металла (сплава) более 90 %, а нижним – температура tн, при которой доля вязкой составляющей в изломе металла менее 10 %, т. е. преобла-дает хрупкий (кристаллический, блестящий) излом. В технике за порог хладноломкости принимают критическую температуруtкр, при которой доля вязкого излома составляет 50 %. Чем ниже порог хлад ноломкости материала, тем выше его надежность при низкой температуре.

1.4. Определение характеристик жаропрочности – прочности металла
при высокой температуре

Жаропрочность − свойство металлов при высокой температуре соп-ротивляться деформации и разрушению при действии приложенных напряжений. Жаропрочность зависит от химического состава, структуры и технологии изготовления сплава.

Основными характеристиками жаропрочности являются предел ползучести σпл и предел длительной прочности σдл. О жаропрочности судят по результатам длительных испытаний на статическое осевое растяжение стандартных образцов (см. рис. 1) при высокой температуре (ГОСТ 9651-84), на ползучесть (ГОСТ 3248-81) и длительную прочность (ГОСТ 10145-81). Образец при испытаниях помещается в термостат, в котором поддерживается заданная температура.

Пределом ползучести называется напряжение, которое вызывает за установленное время испытания при данной температуре заданное удлинение образца (суммарное или остаточное) или заданную скорость ползучести на прямолинейном участке кривой ползучести.

Предел ползучести обозначается как напряжение σ с числовыми индексами – верхний указывает температуру в градусах Т, а нижний − отношение
деформации δ в процентах и времени τ в часах, за которое она возникает , например: МПа означает, чтонапряжение 80 МПа за время 100 000 ч при температуре 600 °С создает 1 % пластической деформации ползучести. Нижний индекс представляет собой скорость ползучести, %/ч, V = 1×10−5.

Читайте также:  Растяжение связки тазобедренного сустава

Предел ползучести является базовой расчетной характеристикой конст-рукций, работающих с ограниченной суммарной деформацией ползучести. Например, для подвижных узлов турбин (валов, лопаток) суммарная деформация ползучести за весь период работы не должна превышать определенного значения, обусловленного конструктивными соображениями работоспособности.

Ползучесть − свойство металлов медленно и непрерывно пластически деформироваться при статическом нагружении, особенно при высокой температуре. При повышенной температуре металлы приобретают способность получать остаточные деформации («ползти») даже в тех случаях, когда действующие напряжения лежат значительно ниже предела текучести (упругости) данного металла при заданной температуре.

Испытания на ползучесть дают возможность получения кривой ползу-чести, представляющей собой графическое изображение зависимости деформации от времени при постоянных температуре и напряжении, по которой определяют деформацию за установленное время или скорость ползучести.

Пределом длительной прочности называется напряжение, которое вызывает разрушение материала при заданной температуре за определенное время.

Предел длительной прочности обозначается как напряжение МПа, с числовыми индексами − верхний указывает температуру в градусах, а нижний − длительность испытания в часах. Например, означает, что температура испытания − 650 °С, длительность испытания − 100 000 ч.

Источник

Расчет на прочность при растяжении
Динамическая прочность при растяжении
Динамическая прочность при растяжении

2.4. РАСЧЕТЫ НА ПРОЧНОСТЬ ПРИ РАСТЯЖЕНИИ Основной задачей расчета конструкции на растяжение является обеспечение ее прочности в условиях эксплуатации. Условие прочности – оценка прочности элемента конструкции, сводящаяся к сравнению расчетных напряжений с допускаемыми: σ≤рσ[р ]; σ с ≤[ с],σ (2.9) где σр и σс – наибольшие расчетные растягивающие и сжимающие напряжения; [σр] и [σс] – допускаемые напряжения при растяжении и сжатии. Допускаемое напряжение – наибольшее напряжение, которое можно допустить в элементе конструкции при условии его безопасной, долговечной и надежной работы: Здесь σпред – предельное напряжение (состояние), при котором конструкция перестает удовлетворять эксплуатационным требованиям; им мо- гут быть предел текучести, предел прочности, предел выносливости, пре- дел ползучести и др. Для конструкций из пластичных материалов при определении допускаемых напряжений используют предел текучести σт (рис. 2.4, а). Это связано с тем, что в случае его превышения деформации резко возрастают при незначительном увеличении нагрузки и конструкция перестает удовлетворять условиям эксплуатации. Допускаемое напряжение в этом случае определяют как Для хрупких материалов (чугун, бетон, керамика) где σвр и σвс – пределы прочности при растяжении и сжатии (рис. 2.4, б). Здесь [n] – нормативный коэффициент запаса прочности. В зависимости от той предельной характеристики, с которой сравнивают расчетное напряжение σ, различают [nт] – нормативный коэффициент запаса прочности по отношению к пределу текучести σт и [nв] – нормативный коэффициент запаса прочности по отношению к пределу прочности σв. Запас прочности – отношение предельно допустимой теоретической нагрузки к той нагрузке, при которой возможна безопасная работа конструкции с учетом случайных перегрузок, непредвиденных дефектов и недостоверности исходных данных для теоретических расчетов. Нормативные коэффициенты запаса прочности зависят: − от класса конструкции (капитальная, временная), − намечаемого срока эксплуатации, − условий эксплуатации (радиация, коррозия, загнивание), − вида нагружения (статическое, циклическое, ударные нагрузки) − неточности задания величины внешних нагрузок, − неточности расчетных схем и приближенности методов расчета − и других факторов. Нормативный коэффициент запаса прочности не может быть единым на все случаи жизни. В каждой отрасли машиностроения сложились свои подходы, методы проектирования и приемы технологии. В изделиях общего машиностроения принимают [nт] = 1,3 – 2,2; [nв] = 3 – 5. Вероятность выхода из строя приближенно можно оценить с помощью коэффициента запаса в условии прочности: n = 1 соответствует вероятности невыхода из строя 50 %; n = 1,2 соответствует вероятности невыхода из строя 90 %; n = 1,5 соответствует вероятности невыхода из строя 99 %; n = 2 соответствует вероятности невыхода из строя 99,9 %. Для неответственных деталей n = 2 много. Для ответственных – мало. Так для каната подъемного лифта это означает на 1000 подъемов одно падение. При расчете конструкций на прочность встречаются три вида задач, которые вытекают из условия прочности а) поверочный расчет (проверка прочности). Известны усилие N и площадь A. Вычисляют σ = N/A и, сравнивая его с предельным σт или σв (для пластичного и хрупкого материалов соответственно), находят фактический коэффициент запаса прочности который затем сопоставляют с нормативным [n]; б) проектный расчет (подбор сечения). Известны внутреннее усилие N и допускаемое напряжение [σ]. Определяют требуемую площадь поперечного сечения стержня в) определение грузоподъемности (несущей способности). Известны площадь А и допускаемое напряжение [σ]. Вычисляют внутреннее усилие N≤N[ ] = ⋅[σ]A, (2.15) а затем в соответствие со схемой нагружения – величину внешней нагрузки F ≤ [F].

Источник