Диаграмма растяжения стали с пределами

Диаграмма растяжения стали с пределами thumbnail

Диаграмма растяжения показывает зависимость удлинения образца от продольной растягивающей силы.

Ее построение является промежуточным этапом в процессе определения механических характеристик материалов (в основном металлов).

Диаграмму растяжения материалов получают экспериментально, при испытаниях образцов на растяжение.

Для этого образцы стандартных размеров закрепляют в специальных испытательных машинах (например УММ-20 или МИ-40КУ) и растягивают до их полного разрушения (разрыва). При этом специальные приборы фиксируют зависимость абсолютного удлинения образца от прикладываемой к нему продольной растягивающей нагрузки и самописец вычерчивает кривую характерную для данного материала.

На рис. 1 показана диаграмма для малоуглеродистой стали. Она построена в системе координат F-Δl, где:
F — продольная растягивающая сила, [Н];
Δl — абсолютное удлинение рабочей части образца, [мм]

Диаграмма растяжения

Рис. 1 Диаграмма растяжения стального образца

Как видно из рисунка, диаграмма имеет четыре характерных участка:
I — участок пропорциональности;
II — участок текучести;
III — участок самоупрочнения;
IV — участок разрушения.

Построение диаграммы

Рассмотрим подробнее процесс построения диаграммы.

В самом начале испытания на растяжение, растягивающая сила F, а следовательно, и деформация Δl стержня равны нулю, поэтому диаграмма начинается из точки пересечения соответствующих осей (точка О).

На участке I до точки A диаграмма вычерчивается в виде прямой линии. Это говорит о том, что на данном отрезке диаграммы, деформации стержня Δl растут пропорционально увеличивающейся нагрузке F.

После прохождения точки А диаграмма резко меняет свое направление и на участке II начинающемся в точке B линия какое-то время идет практически параллельно оси Δl, то есть деформации стержня увеличиваются при практически одном и том же значении нагрузки.

В этот момент в металле образца начинают происходить необратимые изменения. Перестраивается кристаллическая решетка металла. При этом наблюдается эффект его самоупрочнения.

После повышения прочности материала образца, диаграмма снова «идет вверх» (участок III) и в точке D растягивающее усилие достигает максимального значения. В этот момент в рабочей части испытуемого образца появляется локальное утоньшение (рис. 2), так называемая «шейка», вызванное нарушениями структуры материала (образованием пустот, микротрещин и т.д.).

Рис. 2 Стальной образец с «шейкой»

Вследствие утоньшения, и следовательно, уменьшения площади поперечного сечения образца, растягиваещее усилие необходимое для его растяжения уменьшается, и кривая диаграммы «идет вниз».

В точке E происходит разрыв образца. Разрывается образец конечно же в сечении, где была образована «шейка»

Работа затраченная на разрыв образца W равна площади фигуры образованной диаграммой. Ее приближенно можно вычислить по формуле:

W=0,8Fmax∙Δlmax

По диаграмме также можно определить величину упругих и остаточных деформаций в любой момент процесса испытания.

Для получения непосредственно механических характеристик металла образца диаграмму растяжения необходимо преобразовать в диаграмму напряжений.

Предел пропорциональности >
Примеры решения задач >
Лабораторные работы >

Источник

Инструкция к лабораторной работе №2

по сопротивление материалов

Тема: «Определение механических характеристик

при растяжении стального образца»

Симферополь – 2014

Инструкция.

К лабораторной работе № 2 по сопротивлению материалов

Тема: «Определение механических характеристик при растяжении

стального образца»

Цель работы: Определить марки данной обезличенной, т.е. не имеющей

сертификата (паспорта), стали путем сравнения измеренных

механических характеристик этой стали с данными ГОСТа.

Содержание работы.

Диаграмма растяжения стали

Рассмотрим диаграмму растяжения, которая показывает зависимость между растягивающей силой F, действующей на образец, и вызываемой ею деформацией Δl (рис. 1)

На диаграмме можно указать пять характерных точек:

Рис.1Диаграмма растяжения малоуглеродистой стали.

Прямолинейный участок диаграммы ОА указывает на пропорциональность между нагрузкой F и удлинением Δl. (Эта пропорциональность впервые была замечена в 1670 г. Робертом Гуком и получила в дальнейшем название закона Гука).

Величина силы Fпц (точка А), до которой остается справедливым закон Гука, зависит от размеров образца и физических свойств материала.

Если испытуемый образец нагрузить растягивающей силой, не превышающей величину ординаты точки B (силы Fy), а потом разгрузить, то при разгрузке деформации образца будут уменьшаться по тому же закону, по которому они увеличивались при нагружении. Следовательно, в этом случае в образце возникают только упругие деформации.

В случае, если растягивающее усилие выше Fy, при разгрузке образца деформации полностью не исчезают и на диаграмме линия разгрузки будет представлять собой прямую B’О’, уже не совпадающую с линией нагружения, а параллельную ей. В этом случае деформация образца состоит из упругой ΔlупрB’ и остаточной (пластической) ΔlостB’ деформации.

Таким образом, характерной особенностью точки B является то, что при превышении нагрузки Fy образец испытывает остаточные деформации при разгружении.

Выше точки В диаграмма растяжения значительно отходит от прямой (деформация начинает расти быстрее нагрузки, и диаграмма имеет криволинейный вид), а при нагрузке, соответствующей (точка С), переходит в горизонтальный участок. В этой стадии испытания в материале образца по всему его объему распространяются пластические деформации. Образец получает значительное остаточное удлинение практически без увеличения нагрузки.

Свойство материала деформироваться при практически постоянной нагрузке называется текучестью. Участок диаграммы растяжения, параллельный оси абсцисс, называется площадкой текучести.

В процессе текучести на отшлифованной поверхности образца можно наблюдать появление линий (полос скольжения), наклоненных примерно под углом 45° к оси образца (рис. 2а). Эти линии являются следами взаимных сдвигов кристаллов, вызванных касательными напряжениями.

Рис. 2Образование линий сдвига (а) и местного сужения—шейки (б)

Линии сдвига называются линиями Чернова по имени знаменитого русского металлурга Д. К. Чернова (1839 — 1921), впервые обнаружившего их.

Читайте также:  Закон гука при растяжении сжатии и сдвиге

Удлинившись на некоторую величину при постоянном значении силы, т.е. претерпев состояние текучести, материал снова приобретает способность сопротивляться растяжению (упрочняться), и диаграмма поднимается вверх, хотя гораздо более полого, чем раньше. В точке D усилие достигает максимального значения Fmax.

Наличие участка упрочнения (от конца площадки текучести до наивысшей точки диаграммы растяжения) объясняется микроструктурными изменениями материала: когда нагрузка на образец возрастает, микроскопические дефекты (линейные и точечные) группируются так, что развитие сдвигов кристаллов, вызванных касательными напряжениями, затрудняется, а потому сопротивление материала сдвигу начинает возрастать и приближаться к его сопротивлению отрыву.

При достижении усилия Fmax на образце появляется резкое местное сужение, так называемая шейка (рис. 2б), быстрое уменьшение площади сечения которой вызывает падение нагрузки, и в момент, соответствующий точке К диаграммы, происходит разрыв образца по наименьшему сечению шейки.

До точки D диаграммы, соответствующей Fmax, каждая единица длины образца удлинилась примерно одинаково; точно так же во всех сечениях одинаково уменьшались поперечные размеры образца. С момента образования шейки вся деформация образца локализуется на малой длине (lш~ 2d0) в области шейки, а остальная часть образца практически не деформируется.

Абсциссы диаграммы растягивания OE, OF и FE, характеризующие способность образца деформироваться до наступления разрушения, соответствуют полному абсолютному удлинению образца Δlполн, остаточному абсолютному удлинению Δlост и абсолютному упругому удлинению образца Δlупр.

Для определения упругой деформации в момент разрыва необходимо из точки K диаграммы провести прямую KF, параллельную прямолинейному участку OA, так как упругие деформации при разрыве также подчиняются закону Гука.

При выполнении работы для выбора марки стали необходимо определить предел текучести, предел прочности и относительное удлинение образца после разрыва.

Пределом текучести называется условное напряжение, соответствующее нагрузке (точка С):

где:

— предел текучести, кг/см2 (МПа);

— нагрузка, соответствующая наступлению стадии текучести, кг (кН);

— первоначальная площадь поперечного сечения образца (см2);

Пределом прочности при растяжении называется условное напряжение, соответствующее максимальной нагрузке, которую способен выдержать материал при испытании и определяется отношением:

где:

— предел прочности, кг/см2 (МПа);

— разрушающая нагрузка, Т.е. максимальная нагрузка, которую способен выдержать образец при испытании до разрушения, кг (кН).

Относительное остаточное удлинение образца определяется соотношением:

где:

— длина образца после испытания, см;

— длина образца до испытания, см;

В соответствии с ГОСТ 380-60 углеродистая сталь обыкновенного качества должна иметь следующие механические свойства:

Таблица 1

Марка Предел текучести, МПа Предел прочности, МПа Относительное удлинение, %
Ст.0
Ст.1 320-400
Ст.2 190-220 340-420
Ст.3 220-240 380-400
    410-430
    440-470
Ст.4 240-260 420-440
    450-480
    490-520
Ст.5 260-280 500-530
    540-570
    580-620
Ст.6 300-310 600-630
    640-670
    680-720
Ст.7 700-740
    750-800

Указанные характеристики (см. таблицу №1) механических свойств стали могут быть определены при испытании на растяжение. Путем сравнения полученных величин с вышеуказанными требованиями ГОСТ 380-60 обезличенной стали может быть присвоена соответствующая марка.


Образец.

Образцы для испытания на растяжение обычно выполняются круглыми.

Для испытаний берут так называемый, нормальный длинный или нормальный короткий образец.

Для испытаний используем круглый цилиндрический стержень диаметром 7мм, с расчетной длиной 70мм, с утолщениями на концах, служащими для захвата образца в машине и с плавными переходами к этим утолщениям, для предотвращения концентрации напряжения.

а)

б)

Рис. 3Цилиндрический образец до испытания(а), после испытания(б).

Инструмент

а) Штангенциркуль — для обмера первоначальных размеров

поперечного сечения образца.

б) Карандаш для разметки образца по его длине.

Машина для испытаний.

В нашей лаборатории испытание на сжатие производится на силовой установке ПСУ-10. Испытательная машина ПСУ-10 предназначена для статических испытаний на сжатие, а так же на растяжение с использованием реверса.

Максимальное развиваемое машиной усилие 10 000 кг. Шкала силоизмерителя имеет 300 делений.

Возможно использование двух режимов работы: 5 000 кг (цена деления 16,7 кг) и 10 000 кг (цена деления 33,3 кг).

Рис. 4Устройство реверса. Рис. 5Реверс в установке.

Выполнение работы.

Получив все необходимое для работы и ознакомившись с машиной, необходимо измерить и разметить образцы.

Измерение диаметра образца следует производить с точностью до трех значащих цифр, причем размер находится как среднее арифметическое из четырех размеров, взятых в разных местах расчетной длины образца. По среднему размеру определяются площадь поперечного сечения образца и его расчетная длина. После зарисовки (фотографирования) эскиза образца с указанием его размеров приступают, при обязательном присутствии ассистента, к самому испытанию.

Так как величина нагрузки на образец измеряется величиной перемещения стрелки по шкале, то основное внимание испытателя, должно быть сосредоточено на показаниях циферблата.

Нагрузка, соответствующая явлению текучести, определяется по временной остановке стрелки, во время работы нагружающего механизма, а разрушающая нагрузка по максимальному отклонению (по часовой стрелке).

Как известно, в момент, соответствующий разрушающей нагрузке, при испытании малоуглеродистой стали, на образце появляется шейка, поэтому, когда стрелка начинает сдвигаться в направлении против часовой, нужно обратить внимание на появление шейки. После окончательного разрыва вынимают реверсор и исследуют характер разрушения разрушенного образца.

Читайте также:  Как правильно сделать повязку при растяжении

Для определения относительного удлинения при разрыве складывают возможно плотнее части разорванного образца и измеряют расстояние между кернами, соответствующими концам расчетной длины. Вид образца после разрыва также следует заэскизировать (сфотографировать) со всеми найденными размерами. В случае разрыва образца вне расчетной длины испытание считается неудавшимся и повторяется. Замеры и показания снимаются в системе кг и см и вычисления производятся с точностью до трех значащих цифр, а протокол испытания оформляется в соответствии с прилагаемой в конце инструкции формой, переводя в систему СИ (кН и МПа).

Сравнивая полученные результаты с требованиями ГОСТа для стали, приведенных выше марок, следует в конце работы сделать заключение, что на основании произведенных испытаний материал можно отнести к стали определенной марки. После окончания работы, весь инструмент в исправном состоянии должен быть сдан дежурному по лаборатории.

Таблицу с данными об испытаниях необходимо заполнять следующим образом. Первоначально полученный по шкале результат нагрузки в соответствии с ценой деления записывать единицами измерения «кг». Затем приводить результат в соответствие со стандартом СИ, переводя в «кН». Следует учесть, что 1 кг = 0,01 кН (т.е. чтоб получить «кН», надо результат в «кг» умножить на 0,01 или разделить на 100). Далее предел прочности или текучести вычисляется вначале как «кг/см2», а после приводится к системе СИ «МПа». При этом 1 кг/см2 = 0,1 МПа (т.е. чтоб получить «МПа», надо результат в «кг/см2» умножить на 0,1 или разделить на 10).

Форма отчета

Лабораторная работа №2

___________________

___________________

(ФИО, группа студента)

«Определение механических характеристик

при растяжении стального образца»

1. Необходимые приборы и инструменты:

Силовая установка ПСУ-10, штангенциркуль.

2. Эскиз образца до испытания и после испытания (фотография).

3. Журнал наблюдений при определении механических характеристик.

Вывод: в ходе выполнения лабораторный работы провели испытание стали на растяжение, определили марку данной стали путем сравнения измеренных

механических характеристик этой стали с данными ГОСТа.

Размеры расчетной части образца до испытания Нагрузки, соответствующие пределам Предел теку-чести, кг/см2 Предел прочности кг/см2 Размеры расчетной части образца после испытания
Расчет-ная длина, см Диа-метр, см Площадь поперечного сечения, см2 Теку-чести,
кг (кН)
Прочнос-ти,
кг (кН)
Расчет-ная длина, см Диа-метр, см Площадь поперечного сечения, см2 Относительное удлинение, %
5.97 0.59 0.273 868.4 1469.6 3180.95 5383.15 6.54 0.39 0.119 10.1

«___» _________ 201__ г. _______________

(подпись студента)

Дата добавления: 2016-03-28; просмотров: 5712 | Нарушение авторских прав | Изречения для студентов

Читайте также:

Рекомендуемый контект:

Поиск на сайте:

© 2015-2021 lektsii.org — Контакты — Последнее добавление

Источник

Содержание:

  • Диаграмма растяжения

Диаграмма растяжения

  • Растянуть диаграмму Для детального изучения «поведения» различных материалов под нагрузкой лабораторные испытания образцов, изготовленных из этих материалов, проводятся на специальных испытательных машинах. Эти испытания проводятся для определения числовых характеристик, для оценки прочности и пластичности материала. Такую характеристику обычно называют механической. Тестовая машина оснащена устройством, которое

показывает величину нагрузки, передаваемой образцу. Удлинение образца устанавливается специальным измерительным прибором. Есть машина, которая автоматически строит удлинение образца в зависимости от нагрузки. Среди таких машин есть, например, машина IM-4R, выпускаемая на нашем заводе. Общий вид этой машины показан на рисунке. 29.

В испытательной машине предел прочности образца создается механическим или гидравлическим
Людмила Фирмаль

устройством. Это 31-й 29А Для риса. На рисунке 30 показана принципиальная схема машины с гидравлической системой. Масло впрыскивается в цилиндр А, который поднимает поршень и растягивает образец. Значение растягивающего усилия можно определить по давлению, измеренному манометром. Для сравнения результатов испытаний, проведенных в разных лабораториях, были определены тип и размер выборки. Для риса. 31, a и b представляют

круглые (нормальные) и плоские образцы, используемые в Советском Союзе при испытаниях на растяжение металла. Расчетная длина нормального образца равна расстоянию между рисками, приложенными к цилиндрической части / 0 = 10d == 200 мм. * В некоторых случаях используются так называемые небольшие образцы (рис. 31, Б), которые были испытаны на небольшой машине типа IM-4P. Испытание материала на растяжение особенно важно, и

  • свойства материала и его свойства наиболее полно раскрыты. График зависимости между растягивающей силой P и удлинением образца A / называется растягивающей диаграммой. Телескопические чертежи автоматически отрисовываются самописцем история * Если по какой-либо причине невозможно сделать обычный образец, используйте образец диаметром 15 или 10 мм с таким же соотношением длины к диаметру. 32 (тип IM-4P) может быть построен в точке или путем измерения образца и соответствующего удлинения при растяжении. Для изучения свойств материала удобнее использовать диаграмму растяжения, которая устанавливает связь между нормальным

напряжением o и деформацией E. Как правило, для образца условное нормальное напряжение o рассчитывается путем деления нагрузки P на начальную площадь поперечного сечения образца f o. : Деформация e рассчитывается путем деления абсолютного удлинения L / на исходную длину образца / 0: тонна — Два упомянутых типа напряженности связаны только по масштабу. Рис 30л Поэтому низкоуглеродистая (пластиковая) сталь ст.3 (рис. 32, а). На этом рисунке нам нужно обратить внимание на некоторые характерные точки A, B, C, D и M. В начале графика ОА фигура представляет собой диагональную прямую линию. В этих пределах напряжение

растет пропорционально Рис 31а 2 Порядок № 1037 пропорционален деформации e, т. Е. Наблюдается крючковый метод, который
Людмила Фирмаль

соответствует пределам пропорциональности APC. Пропорциональный предел APC — это максимальное напряжение, при котором действует закон Крюка (Сталь St.3APC «» 2100 кг! SMG®210M «LI2). Касательная к горизонтальной оси угла наклона прямой части ОА равна модулю упругости: В нарушение точки А, кривой диаграммы и закона Хука выше деформация начинает расти быстрее, чем возрастает напряжение. Вы можете отметить точку B, которая очень близка к точке A на графике кривой на рисунке и соответствует пределу упругости AUP. Предел упругости AUP — это максимальное напряжение, которое материал может выдержать без каких-либо признаков остаточной деформации во время разгрузки *. Поскольку точка B близка к точке A, ее часто считают совпадением. Если вы проведете вертикальную линию через точку B, с левой стороны этой

Читайте также:  Мышцы на руке растяжение

линии на диаграмме будет зона упругой деформации, а справа — зона упругой пластической деформации (упругая деформация и пластическая деформация). Начиная с некоторой точки C, есть горизонтальный (или почти горизонтальный) участок, соответствующий диаграмме история * По ГОСТ условным пределом для упругости st05 является напряжение, при котором остаточная деформация достигает 0,05%. Если в технических условиях имеются специальные указания, то остаточное удлинение считается меньшим. 34 от предела текучести. В этой области деформация увеличивается без увеличения нагрузки, и материал, кажется, течет. Предел текучести <ZT — это напряжение, которое увеличивает деформацию

без увеличения нагрузки (в случае стали Ст.3 «,» 2400kpsm2 240Mn! M2) Поэтому горизонтальный участок диаграммы называется сайт *. свойства флюида * Некоторые металлы не имеют значительного предела текучести. Для них, иногда принимаемых за условный предел текучести, остаточная деформация составляет EO Jo, 2%, и соответствующее напряжение обозначается как st02. ** Они были впервые описаны немецким металлургом Людерсом в 1859 году и независимо российским металлургом Черновым в 1884 году. В низкоуглеродистой стали явление текучести наблюдалось из-за сдвига внутри кристалла феррита. Микрофотография такой стали

(рис. 33) отображается вокруг них с текучим кристаллом феррита 1 — сеткой из третичного цементита 2 и перлитных включений 3. В пределе текучести хрупкая цементитная сетка начинает разрушаться, передавая воспринимаемое усилие кристаллу феррита. В результате кристаллы феррита деформируются, и они, по-видимому, смещают большую часть напряжения сдвига на наклонной поверхности (в большинстве кристаллов) под углом около 45 ° к оси 4 стержня. Эти сдвиги видны невооруженным глазом на поверхности полированного образца, расширенного до предела текучести в виде полос, называемых линиями Людерса *. Иногда H * arnova в начале сайта.

«Зубчики», обеспечивающие ликвидность (см. Рис. 32,6 относительно различия между верхним и нижним пределами ликвидности). Начиная с определенной точки (рис. 32) происходит дальнейшее увеличение нагрузки деформации и ее повторное увеличение. «Самоупрочнение» стали объясняется высвобождением 35A) Кроме того, поверхность сдвига от твердого раствора феррита новых мелких частиц, чтобы предотвратить сдвиг. Эта кривая изменяется вдоль гладкой кривой, имеющей самую высокую точку D, где условное напряжение ^ = принимает максимальное значение и достигает предела прочности на растяжение AB. Предел прочности при растяжении AB (или временное сопротивление) — это напряжение,

соответствующее наибольшей нагрузке, предшествующей разрушению образца (для стали St.3AB ~ 4000 кг / см2 400Mn / м2). До достижения предела прочности на разрыв продольные и поперечные деформации образца равномерно распределяются по расчетной длине. После достижения точки d на диаграмме эти деформации концентрируются в самых слабых местах, где начинает формироваться шея. Быстрое продвижение34, а). С этой точки зрения продольная деформация не зависит как от длины образца, так и от его диаметра. Это связано со сравнимостью результатов испытаний, полученных в разных лабораториях, и необходимостью получения регулярных образцов с определенным соотношением между длиной образца и его диаметром. После точки D вертикальная ось фигуры начинает уменьшаться, а нагрузка уменьшается, что объясняется дальнейшим уменьшением поперечного сечения. Шейное сечение.

Наконец, разрыв образца. На этом рисунке это соответствует точке М и напряжению ар. Когда образец разрушается, в центре поперечного сечения в центре шейки появляется поперечная трещина, а оставшаяся часть разрезается под углом около 45 ° к оси стержня, что приводит к поломке образца 34,6). Эта форма разрушения образца из пластмассовой стали находится в области, где трещина наклонена под углом 45 ° к оси стержня, где напряжение сдвига максимально. Если, начиная с нескольких точек, диаграмма (рис. 35) выгружает образец, а диаграмма следует по прямой / (7), сегмент OKi, приблизительно параллельный линии ОА, равен остаточной деформации Е0 и соответствует точке К Сумма деформации сегмента e равна сумме двух указанных деформаций: е = е0 4-й. Когда вы снова

начинаете загружать образец, фигура становится почти маленькой петлей вдоль линии KiK. Эта петля заштрихована на рисунке. 35 получается из-за необратимой потери энергии деформации. Это называется петлей гистерезиса. Начиная с точки K, фигура изменяется с кривой kikdm, то есть при повторной загрузке, то есть при выгрузке и перезагрузке образца, фигура изменяется. Вместо кривой oacdm (рис. 35) — характеристики исходного незагруженного образца. Предел текучести исчез, пропорциональный предел увеличился, а общая деформация при разрушении уменьшилась (/ ( M2 <OM2) — металл остался неповрежденным и более хрупким. Я позвонил.

Смотрите также:

  • Учебник по сопротивлению материалов: сопромату

Источник