Диаграмма растяжения стали 08ю

Диаграмма растяжения стали 08ю thumbnail

Инструкция к лабораторной работе №2

по сопротивление материалов

Тема: «Определение механических характеристик

при растяжении стального образца»

Симферополь – 2014

Инструкция.

К лабораторной работе № 2 по сопротивлению материалов

Тема: «Определение механических характеристик при растяжении

стального образца»

Цель работы: Определить марки данной обезличенной, т.е. не имеющей

сертификата (паспорта), стали путем сравнения измеренных

механических характеристик этой стали с данными ГОСТа.

Содержание работы.

Диаграмма растяжения стали

Рассмотрим диаграмму растяжения, которая показывает зависимость между растягивающей силой F, действующей на образец, и вызываемой ею деформацией Δl (рис. 1)

На диаграмме можно указать пять характерных точек:

Рис.1Диаграмма растяжения малоуглеродистой стали.

Прямолинейный участок диаграммы ОА указывает на пропорциональность между нагрузкой F и удлинением Δl. (Эта пропорциональность впервые была замечена в 1670 г. Робертом Гуком и получила в дальнейшем название закона Гука).

Величина силы Fпц (точка А), до которой остается справедливым закон Гука, зависит от размеров образца и физических свойств материала.

Если испытуемый образец нагрузить растягивающей силой, не превышающей величину ординаты точки B (силы Fy), а потом разгрузить, то при разгрузке деформации образца будут уменьшаться по тому же закону, по которому они увеличивались при нагружении. Следовательно, в этом случае в образце возникают только упругие деформации.

В случае, если растягивающее усилие выше Fy, при разгрузке образца деформации полностью не исчезают и на диаграмме линия разгрузки будет представлять собой прямую B’О’, уже не совпадающую с линией нагружения, а параллельную ей. В этом случае деформация образца состоит из упругой ΔlупрB’ и остаточной (пластической) ΔlостB’ деформации.

Таким образом, характерной особенностью точки B является то, что при превышении нагрузки Fy образец испытывает остаточные деформации при разгружении.

Выше точки В диаграмма растяжения значительно отходит от прямой (деформация начинает расти быстрее нагрузки, и диаграмма имеет криволинейный вид), а при нагрузке, соответствующей (точка С), переходит в горизонтальный участок. В этой стадии испытания в материале образца по всему его объему распространяются пластические деформации. Образец получает значительное остаточное удлинение практически без увеличения нагрузки.

Свойство материала деформироваться при практически постоянной нагрузке называется текучестью. Участок диаграммы растяжения, параллельный оси абсцисс, называется площадкой текучести.

В процессе текучести на отшлифованной поверхности образца можно наблюдать появление линий (полос скольжения), наклоненных примерно под углом 45° к оси образца (рис. 2а). Эти линии являются следами взаимных сдвигов кристаллов, вызванных касательными напряжениями.

Рис. 2Образование линий сдвига (а) и местного сужения—шейки (б)

Линии сдвига называются линиями Чернова по имени знаменитого русского металлурга Д. К. Чернова (1839 — 1921), впервые обнаружившего их.

Удлинившись на некоторую величину при постоянном значении силы, т.е. претерпев состояние текучести, материал снова приобретает способность сопротивляться растяжению (упрочняться), и диаграмма поднимается вверх, хотя гораздо более полого, чем раньше. В точке D усилие достигает максимального значения Fmax.

Наличие участка упрочнения (от конца площадки текучести до наивысшей точки диаграммы растяжения) объясняется микроструктурными изменениями материала: когда нагрузка на образец возрастает, микроскопические дефекты (линейные и точечные) группируются так, что развитие сдвигов кристаллов, вызванных касательными напряжениями, затрудняется, а потому сопротивление материала сдвигу начинает возрастать и приближаться к его сопротивлению отрыву.

При достижении усилия Fmax на образце появляется резкое местное сужение, так называемая шейка (рис. 2б), быстрое уменьшение площади сечения которой вызывает падение нагрузки, и в момент, соответствующий точке К диаграммы, происходит разрыв образца по наименьшему сечению шейки.

До точки D диаграммы, соответствующей Fmax, каждая единица длины образца удлинилась примерно одинаково; точно так же во всех сечениях одинаково уменьшались поперечные размеры образца. С момента образования шейки вся деформация образца локализуется на малой длине (lш~ 2d0) в области шейки, а остальная часть образца практически не деформируется.

Абсциссы диаграммы растягивания OE, OF и FE, характеризующие способность образца деформироваться до наступления разрушения, соответствуют полному абсолютному удлинению образца Δlполн, остаточному абсолютному удлинению Δlост и абсолютному упругому удлинению образца Δlупр.

Для определения упругой деформации в момент разрыва необходимо из точки K диаграммы провести прямую KF, параллельную прямолинейному участку OA, так как упругие деформации при разрыве также подчиняются закону Гука.

Читайте также:  Чем мазать при растяжении пальца

При выполнении работы для выбора марки стали необходимо определить предел текучести, предел прочности и относительное удлинение образца после разрыва.

Пределом текучести называется условное напряжение, соответствующее нагрузке (точка С):

где:

— предел текучести, кг/см2 (МПа);

— нагрузка, соответствующая наступлению стадии текучести, кг (кН);

— первоначальная площадь поперечного сечения образца (см2);

Пределом прочности при растяжении называется условное напряжение, соответствующее максимальной нагрузке, которую способен выдержать материал при испытании и определяется отношением:

где:

— предел прочности, кг/см2 (МПа);

— разрушающая нагрузка, Т.е. максимальная нагрузка, которую способен выдержать образец при испытании до разрушения, кг (кН).

Относительное остаточное удлинение образца определяется соотношением:

где:

— длина образца после испытания, см;

— длина образца до испытания, см;

В соответствии с ГОСТ 380-60 углеродистая сталь обыкновенного качества должна иметь следующие механические свойства:

Таблица 1

Марка Предел текучести, МПа Предел прочности, МПа Относительное удлинение, %
Ст.0
Ст.1 320-400
Ст.2 190-220 340-420
Ст.3 220-240 380-400
    410-430
    440-470
Ст.4 240-260 420-440
    450-480
    490-520
Ст.5 260-280 500-530
    540-570
    580-620
Ст.6 300-310 600-630
    640-670
    680-720
Ст.7 700-740
    750-800

Указанные характеристики (см. таблицу №1) механических свойств стали могут быть определены при испытании на растяжение. Путем сравнения полученных величин с вышеуказанными требованиями ГОСТ 380-60 обезличенной стали может быть присвоена соответствующая марка.


Образец.

Образцы для испытания на растяжение обычно выполняются круглыми.

Для испытаний берут так называемый, нормальный длинный или нормальный короткий образец.

Для испытаний используем круглый цилиндрический стержень диаметром 7мм, с расчетной длиной 70мм, с утолщениями на концах, служащими для захвата образца в машине и с плавными переходами к этим утолщениям, для предотвращения концентрации напряжения.

а)

б)

Рис. 3Цилиндрический образец до испытания(а), после испытания(б).

Инструмент

а) Штангенциркуль — для обмера первоначальных размеров

поперечного сечения образца.

б) Карандаш для разметки образца по его длине.

Машина для испытаний.

В нашей лаборатории испытание на сжатие производится на силовой установке ПСУ-10. Испытательная машина ПСУ-10 предназначена для статических испытаний на сжатие, а так же на растяжение с использованием реверса.

Максимальное развиваемое машиной усилие 10 000 кг. Шкала силоизмерителя имеет 300 делений.

Возможно использование двух режимов работы: 5 000 кг (цена деления 16,7 кг) и 10 000 кг (цена деления 33,3 кг).

Рис. 4Устройство реверса. Рис. 5Реверс в установке.

Выполнение работы.

Получив все необходимое для работы и ознакомившись с машиной, необходимо измерить и разметить образцы.

Измерение диаметра образца следует производить с точностью до трех значащих цифр, причем размер находится как среднее арифметическое из четырех размеров, взятых в разных местах расчетной длины образца. По среднему размеру определяются площадь поперечного сечения образца и его расчетная длина. После зарисовки (фотографирования) эскиза образца с указанием его размеров приступают, при обязательном присутствии ассистента, к самому испытанию.

Так как величина нагрузки на образец измеряется величиной перемещения стрелки по шкале, то основное внимание испытателя, должно быть сосредоточено на показаниях циферблата.

Нагрузка, соответствующая явлению текучести, определяется по временной остановке стрелки, во время работы нагружающего механизма, а разрушающая нагрузка по максимальному отклонению (по часовой стрелке).

Как известно, в момент, соответствующий разрушающей нагрузке, при испытании малоуглеродистой стали, на образце появляется шейка, поэтому, когда стрелка начинает сдвигаться в направлении против часовой, нужно обратить внимание на появление шейки. После окончательного разрыва вынимают реверсор и исследуют характер разрушения разрушенного образца.

Для определения относительного удлинения при разрыве складывают возможно плотнее части разорванного образца и измеряют расстояние между кернами, соответствующими концам расчетной длины. Вид образца после разрыва также следует заэскизировать (сфотографировать) со всеми найденными размерами. В случае разрыва образца вне расчетной длины испытание считается неудавшимся и повторяется. Замеры и показания снимаются в системе кг и см и вычисления производятся с точностью до трех значащих цифр, а протокол испытания оформляется в соответствии с прилагаемой в конце инструкции формой, переводя в систему СИ (кН и МПа).

Сравнивая полученные результаты с требованиями ГОСТа для стали, приведенных выше марок, следует в конце работы сделать заключение, что на основании произведенных испытаний материал можно отнести к стали определенной марки. После окончания работы, весь инструмент в исправном состоянии должен быть сдан дежурному по лаборатории.

Читайте также:  Признаки растяжения цепи грм шкода

Таблицу с данными об испытаниях необходимо заполнять следующим образом. Первоначально полученный по шкале результат нагрузки в соответствии с ценой деления записывать единицами измерения «кг». Затем приводить результат в соответствие со стандартом СИ, переводя в «кН». Следует учесть, что 1 кг = 0,01 кН (т.е. чтоб получить «кН», надо результат в «кг» умножить на 0,01 или разделить на 100). Далее предел прочности или текучести вычисляется вначале как «кг/см2», а после приводится к системе СИ «МПа». При этом 1 кг/см2 = 0,1 МПа (т.е. чтоб получить «МПа», надо результат в «кг/см2» умножить на 0,1 или разделить на 10).

Форма отчета

Лабораторная работа №2

___________________

___________________

(ФИО, группа студента)

«Определение механических характеристик

при растяжении стального образца»

1. Необходимые приборы и инструменты:

Силовая установка ПСУ-10, штангенциркуль.

2. Эскиз образца до испытания и после испытания (фотография).

3. Журнал наблюдений при определении механических характеристик.

Вывод: в ходе выполнения лабораторный работы провели испытание стали на растяжение, определили марку данной стали путем сравнения измеренных

механических характеристик этой стали с данными ГОСТа.

Размеры расчетной части образца до испытания Нагрузки, соответствующие пределам Предел теку-чести, кг/см2 Предел прочности кг/см2 Размеры расчетной части образца после испытания
Расчет-ная длина, см Диа-метр, см Площадь поперечного сечения, см2 Теку-чести,
кг (кН)
Прочнос-ти,
кг (кН)
Расчет-ная длина, см Диа-метр, см Площадь поперечного сечения, см2 Относительное удлинение, %
5.97 0.59 0.273 868.4 1469.6 3180.95 5383.15 6.54 0.39 0.119 10.1

«___» _________ 201__ г. _______________

(подпись студента)

Дата добавления: 2016-03-28; просмотров: 5152 | Нарушение авторских прав | Изречения для студентов

Читайте также:

Рекомендуемый контект:

Поиск на сайте:

© 2015-2020 lektsii.org — Контакты — Последнее добавление

Источник

Влияние нейтронного облучения на диаграмму растяжения стали (фиг. 279, а) показывает резкое повышение предела текучести и удлинения, особенно при повышении его энергии. Нейтронное облучение также резко повышает температуру перехода стали в хрупкое состояние (фиг. 279, б).
[c.469]

Исследованиями [4—6] было установлено, что на диаграммах растяжения сталей и сплавов, склонных к деформационному старению, появляются зуб и площ адка текучести.
[c.5]

Отметим, что ярко выраженную площадку текучести имеют только диаграммы растяжения малоуглеродистой стали и некоторых сплавов цветных металлов. На рис. 19.7 показан для сравнения вид диаграмм растяжения сталей с различным содержанием углерода из рисунка видно, что с повышением процента содержания углерода увеличивается прочность стали и уменьшается ее пластичность.
[c.210]

Для определения механических свойств стали подвергают испытанию на растяжение стандартные образцы. Типичная диаграмма растяжения стали Ст. 3 приведена на рис. 1-3, где —предел текучести, —предел прочности (временное сопротивление).
[c.10]

Для сравнения расчетных и экспериментальных нагрузок на оболочки диаграмма растяжения стали (рис. 8.12) аппроксимируется диаграммой идеального жесткопластического тела, причем предел текучести приравнивается значению напряжения, соответствующего относительному удлинению, равному 0,2% (а =
[c.267]

Следует отметить, что тела, лишенные свойств упругости (вязкопластическое, пластическое с упрочнением и идеально пластическое), не являются далеко идущими идеализациями реальных тел, так как значения упругих деформаций обычно во много раз меньше пластических. На рис. 116 представлена для сравнения диаграмма растяжения стали вплоть до разрыва. За пределом текучести ее упругая деформация составляет лишь незначительную часть общей деформации.
[c.373]

Диаграммы растяжения при 20° С углеродистых сталей, подвергнутых прокатке с обжатием 26—28% при 20—700° С, получаются монотонными, без зуба текучести и без зубчатости на всем протяжении. Площадка текучести на диаграммах растяжения сталей Ю и 40 появляется после. прокатки при 550
[c.275]

Диаграмма растяжения стали Ст. 3
[c.24]

Рис. 6.40. Кривые коэффициентов концентрации напряжения при упруго-пластическом осевом растяжении круговой цилиндрической оболочки, ослабленной круговым отверстием, в зависимости от параметра нагружения Л = 0/о о, 2 (ст — напряжение на бесконечности. Сто, 2 — условный предел текучести материала оболочки). Кривые 1 (V = = 0,142), 2 (у =2), 3 (у = 4) соответствуют дюралюминиевым оболочкам кривые 4 у = 4) и 5 (у =10) соответствуют стальным оболочкам (диаграмма растяжения стали не имеет площадки текучести). Масштаб X для кривых 1, 2, 3, 4, 5 представлен по оси абсцисс (соответственно Я], Яг, Яз, Л4-5). Рис. 6.40. Кривые <a href="/info/2304">коэффициентов концентрации напряжения</a> при упруго-пластическом <a href="/info/205735">осевом растяжении</a> <a href="/info/262805">круговой цилиндрической оболочки</a>, ослабленной круговым отверстием, в зависимости от <a href="/info/136102">параметра нагружения</a> Л = 0/о о, 2 (ст — напряжение на бесконечности. Сто, 2 — <a href="/info/1800">условный предел текучести</a> материала оболочки). Кривые 1 (V = = 0,142), 2 (у =2), 3 (у = 4) соответствуют дюралюминиевым оболочкам кривые 4 у = 4) и 5 (у =10) соответствуют стальным оболочкам (<a href="/info/4841">диаграмма растяжения</a> стали не имеет <a href="/info/7017">площадки текучести</a>). Масштаб X для кривых 1, 2, 3, 4, 5 представлен по оси абсцисс (соответственно Я], Яг, Яз, Л4-5).
Читайте также:  Как снять боль при растяжении связок народными средствами

При растяжении образца на машинах регистрируют нагрузку на образец и его удлинение А1. По полученным данным строят диаграмму растяжения образца, представляющую кривую Р = = / (А1). Такая диаграмма для образца из малоуглеродистой стали показана на рис, 92, в, Большинство современных испыта-
[c.132]

Диаграмма растяжения образца из малоуглеродистой стали (рис. 92, а) характеризуется следующими четырьмя отличительными участками.
[c.133]

Заметим еще, что площадка текучести есть у сравнительно немногих металлов — малоуглеродистой стали, латуни и некоторых отожженных марганцовистых и алюминиевых бронз. Большинству же металлов свойственен постепенный переход в пластическую область. Для сравнения на рис. 106 изображены диаграммы растяжения нескольких металлов кривая 1 — бронзы (а = 2470 кгс/см , б = 36%) 2 — углеродистой стали = 3580 кгс/см , б = 38%)
[c.100]

На рис. 11.8 приведена в координатах в, а, диаграмма растяжения образца из малоуглеродистой стали. Как видно, вначале на участке ОА до некоторого напряжения называемого
[c.32]

Как было отмечено выше, диаграммы растяжения для многих марок стали, а также сплавов цветных металлов не имеют площадки текучести. Характерный вид диаграммы растяжения для подобных материалов показан на рис. 11.10.
[c.34]

Типичная диаграмма сжатия пластичного материала (малоуглеродистая сталь) показана на рис. 11.18, а. Вначале диаграмма имеет вид, аналогичный диаграмме растяжения. Дальше кривая идет круто вверх из-за увеличения площади сечения образца и упрочнения материала. Разрушения при этом не получается. Образец просто сплющивается (рис. 11.18, б), и опыт приходится прекращать. В результате испытания определяют предел текучести при сжатии. Для пластичных материалов пределы текучести при растяжении и сжатии практически одинаковы, но площадка текучести при сжатии выявлена значительно меньше, чем при растяжении.
[c.42]

При испытании некоторых пластических материалов (среднеуглеродистая сталь, медь, алюминий) на диаграмме растяжения не образуется ясно выраженной стадии текучести (рис. 2.23). Для таких материалов вводится условный предел текучести, равный напряжению, при котором продольная деформация образца в — =0,002, т. е. 0,2%. Условный предел текучести обозначается Оо.г-
[c.169]

Диаграмма растяжения стали. Рассмотрим диаграмму растяжения малоуглеродистой стали марки ВСтЗ, обладающей хорошо выраженными пластическими свойствами и широко применяемой в строительстве. Если испытывать образцы разных размеров, то получим различные диаграммы Р=/(А/)-Для определения обобщенных механических характеристик материала диаграммы строят в координатах напряжение — деформация с =/ (е), которые определяются по формулам
[c.56]

Для стали Ср = 1,36, а значение а берется из действительной диаграммы растяжения стали (см. рис. 32) при деформации е = = 122% (с учетом предела упрочнения стали). Для серых чугунов Ср = 1,25 и ст = Стсж (где Стсж — предел прочности при сжатии образцов с высотой, равной диаметру).
[c.58]

Об охрупчивании стали можно также судить по виду диаграммы растяжения. Известно, что у охрупченных сталей площадка текучести не обнаруживается. На рис. 38 показан вид диаграмм растяжения стали после травления в 10%-ной Н2504, разное время. Видно, что на кривой 2 площадка текучести отсутствует, когда сталь испытывает наиболее сильное охрупчивание после травления в течение 10 мин.
[c.89]

Диаграммы растяжения. Для испытаний на растяжение применяют разрывные машины, позволяющие в процессе испытания определять усилия и соответствующие им деформации образца. По зтим данным строят первичную диаграмму растяжения, в которой по оси ординат откладывают усилия, а по оси абсцисс — соответствующие им удлинения. Диаграмма растяжения может быть получена и автоматически при помощи специальных диаграммных аппаратов. Характер диаграммы растяжения зависит от свойств испытуемого материала. Типичный вид такой диаграммы для малоуглеродистой стали изображен на рис. 100.
[c.92]

Склонность к циклическому упрочнению свойственна тем сталям, которые хорошо отожжены (горячекаганные малоуглеродистые стали) или высоко отпущены после закалки и имеют диаграмму растяжения (рис. 5.2), характеризуемую большой равномерной деформацией (1 /в > 0,5 )/к) и большой протяженностью стадии деформационного упрочнения.
[c.388]

Сопротивление материалов Издание 6
(1979) — [

c.29

,

c.31

]

Источник