Деформации и перемещения при осевом растяжении

Деформации и перемещения при осевом растяжении thumbnail

Напряжения и деформации. Коэффициент Пуассона. Закон Гука

Осевое растяжение (рис. 2.1, а) и сжатие (рис. 2.1, б) возникают под действием сил, направленных вдоль оси бруса (стержня). При растяжении (сжатии) в поперечном сечении бруса возникает только одно внутреннее усилие — продольная сила N. На растяжение (сжатие) работают канаты, стержни ферм и т.п. Растяжение (сжатие) могут вызвать сосредоточенные силы и продольная распределенная нагрузка (рис. 2.2). Здесь q — интенсивность продольной распределенной нагрузки, сила, приходящаяся на единицу длины, Н/м, кН/м.

Осевое растяжение (а) и сжатие (б)

Рис. 2.1. Осевое растяжение (а) и сжатие (б)

Элемент, работающий на растяжение

Рис. 2.2. Элемент, работающий на растяжение

Изобразим стержень, который подвергается центральному растяжению (рис. 2.3). Для определения внутренних сил применим метод сечений. В произвольном сечении стержня покажем внутренние усилия, которые при данном виде нагружения будут совпадать с направлением нормальных напряжений.

Дефрмации при осевом растяжении (а) и равнодействующая внутренних сил (б)

Рис. 2.3. Дефрмации при осевом растяжении (а) и равнодействующая внутренних сил (б): / — исходное состояние; 2 — деформационное состояние

Равнодействующая внутренних усилий будет состоять только из продольной составляющей:
Деформации и перемещения при осевом растяжении

Она будет приложена в центре тяжести сечения стержня, который совпадает с продольной осью.

Деформации и перемещения при осевом растяжении

При расчетах по методу сечений будем всегда продольную силу направлять наружу. Если N > 0, то она направлена верно, а если получается, что jV

Составим уравнение равновесия отсеченной части:

Деформации и перемещения при осевом растяжении

Из гипотезы плоских сечений, высказанной голландским ученым Д. Бернулли, следует, что в пределах действия закона Гука плоские поперечные сечения стержня смещаются при растяжении параллельно начальным положениям, оставаясь плоскими (рис. 2.3, б). Это возможно лишь в случае, если нормальные напряжения во всех точках сечения одинаковы, т.е. О = const. Отсюда следует:

Деформации и перемещения при осевом растяжении

Под действием осевых растягивающих сил стержень постоянного сечения площадью А удлиняется на величину

Деформации и перемещения при осевом растяжении

где /j и /0 — длины стержня в деформированном и начальном состояниях;

А/ — абсолютное или полное удлинение.

Относительное удлинение

Деформации и перемещения при осевом растяжении

При растяжении и сжатии возникает также и поперечная деформация стержня

Деформации и перемещения при осевом растяжении

где и а0 ширина стержня в деформированном и первоначальном состояниях; А а — абсолютная поперечная деформация.

Относительная поперечная деформация

Деформации и перемещения при осевом растяжении

Знак (-) показывает, что при растяжении поперечные размеры стержня уменьшаются.

Коэффициент Пуассона. Отношение поперечной деформации к продольной при растяжении (сжатии), взятое по абсолютной величине, называют коэффициентом Пуассона:

Деформации и перемещения при осевом растяжении

Значение V для всех материалов находится в пределах 0

Закон Гука. Для подавляющего большинства конструкционных материалов с достаточной для практики точностью можно считать, что в известных пределах нагружения между продольной деформацией и соответствующим (действующим в ее направлении) нормальным напряжением существует пропорциональная (линейная) зависимость. Эта зависимость носит название закона Гука и записывается в виде
Деформации и перемещения при осевом растяжении

где Е — коэффициент пропорциональности, именуемый модулем упругости первого рода (модуль Юнга).

По физическому смыслу модуль упругости — напряжение, которое вызывает деформацию ? = 1 (удлинение стержня, равное первоначальной длине).

Для статей по данным экспериментов Е = (2…2,2)105 МПа для ста-

N А/

леи. Учитывая, что О = —, ? = —, закон Гука для растянутого стержня можно записать

Деформации и перемещения при осевом растяжении

где X] =— — коэффициент податливости стержня, показывающий уд-

is • А

линение (укорочение) стержня, вызываемое растягивающей силой F= 1 Н.

Произведение ЕА называют жесткостью сечения стержня при растяжении (сжатии). Для стержней переменного (ступенчатого) сечения удлинения определяют по участкам (ступеням) и результаты суммируют алгебраически:

Деформации и перемещения при осевом растяжении

где i — номер участка (i = 1, 2,…,«).

При расчете упругих перемещений стержня от нескольких сил часто применяют принцип независимости действия сил: перемещение стержня от действия группы сил может быть получено как сумма перемещений от действия каждой силы в отдельности.

Пример 2.1. Определить полное удлинение стержня (рис. 2.4).

Решение

Определение внутренних сил и построение их эпюрыДеформации и перемещения при осевом растяжении

Рис. 2.4. Определение внутренних сил и построение их эпюры

Определим с помощью метода сечений значения продольной силы на каждом участке. Для этого сделаем три сечения. Рассмотрим равновесие отсеченных частей:
Деформации и перемещения при осевом растяжении

Изобразим графически распределение продольных сил по длине стержня. График изменения продольных сил по длине стержня называется эпюрой. Каждая ордината эпюры равна значению N в данном сечении. Эпюру строят на линии, проведенной параллельно оси стержня. Подставив найденные значения N, N2, N3 в формулу, определим общее удлинение стержня

Деформации и перемещения при осевом растяжении

Пример 2.2. Определить величину напряжения О. возникающего в поперечном сечении, абсолютное удлинение Д/ и относительное укорочение ? стального стержня диаметром d = 40 мм, длиной / = 1,5 м, растягиваемого силой F = 100 кН, если Е = 2,1 • 105 Н/мм2 (рис. 2.5).

К примеру 2.2

Рис. 2.5. К примеру 2.2

Решение

Площадь сечения
Деформации и перемещения при осевом растяжении Напряжение

Деформации и перемещения при осевом растяжении

Абсолютное удлинение
Деформации и перемещения при осевом растяжении Относительное удлинение

Деформации и перемещения при осевом растяжении

Пример 2.3. Стальная штанга длиной / = 8 м и площадью сечения А = 8 см2 под действием растягивающей нагрузки получила абсолютное удлинение А/ = 5,7 мм. Определить величину нагрузки F и напряжения G, если известно, что модуль упругости материала тяги Е = 2,МО5 МПа (рис. 2.6).

Решение

Относительное удлинение
Деформации и перемещения при осевом растяжении Величина напряжения

Деформации и перемещения при осевом растяжении

Величина нагрузки
К примеру 2.3

Деформации и перемещения при осевом растяжении

Рис. 2.6. К примеру 2.3

Источник

Внутренние усилия при растяжении-сжатии.

Осевое (центральное) растяжение или сжатие прямого бруса вызывается внешними силами, вектор равнодействующей которых совпадает с осью бруса. При растяжении или сжатии в поперечных сечениях бруса возникают только продольные силы N. Продольная сила N в некотором сечении равна алгебраической сумме проекции на ось стержня всех внешних сил, действующих по одну сторону от рассматриваемого сечения. По правилу знаков продольной силы N принято считать, что от растягивающих внешних нагрузок возникают положительные продольные силы N, а от сжимающих — продольные силы N отрицательны (рис. 5).

правило знаков для продольных сил

Чтобы выявить участки стержня или его сечения, где продольная сила имеет наибольшее значение, строят эпюру продольных сил, применяя метод сечений, подробно рассмотренный в статье:
Анализ внутренних силовых факторов в статистически определимых системах
Ещё настоятельно рекомендую взглянуть на статью:
Расчёт статистически определимого бруса
Если разберёте теорию в данной статье и задачи по ссылкам, то станете гуру в теме «Растяжение-сжатие» =)

Напряжения при растяжении-сжатии.

Определенная методом сечений продольная сила N, является равнодействующей внутренних усилий распределенных по поперечному сечению стержня (рис. 2, б). Исходя из определения напряжений, согласно выражению (1), можно записать для продольной силы:

напряжения при растяжении-сжатии

где σ — нормальное напряжение в произвольной точке поперечного сечения стержня.


Чтобы определить нормальные напряжения в любой точке бруса необходимо знать закон их распределения по поперечному сечению бруса. Экспериментальные исследования показывают: если нанести на поверхность стержня ряд взаимно перпендикулярных линий, то после приложения внешней растягивающей нагрузки поперечные линии не искривляются и остаются параллельными друг другу (рис.6, а). Об этом явлении говорит гипотеза плоских сечений (гипотеза Бернулли): сечения, плоские до деформации, остаются плоскими и после деформации.

механизм деформации растяжения

Так как все продольные волокна стержня деформируются одинаково, то и напряжения в поперечном сечении одинаковы, а эпюра напряжений σ по высоте поперечного сечения стержня выглядит, как показано на рис.6, б. Видно, что напряжения равномерно распределены по поперечному сечению стержня, т.е. во всех точках сечения σ = const. Выражение для определения величины напряжения имеет вид:

формула напряжения

Таким образом, нормальные напряжения, возникающие в поперечных сечениях растянутого или сжатого бруса, равны отношению продольной силы к площади его поперечного сечения. Нормальные напряжения принято считать положительными при растяжении и отрицательными при сжатии.

Деформации при растяжении-сжатии.

Рассмотрим деформации, возникающие при растяжении (сжатии) стержня (рис.6, а). Под действием силы F брус удлиняется на некоторую величину Δl называемую абсолютным удлинением, или абсолютной продольной деформацией, которая численно равна разности длины бруса после деформации l1 и его длины до деформации l

абсолютное удлинение

Отношение абсолютной продольной деформации бруса Δl к его первоначальной длине l называют относительным удлинением, или относительной продольной деформацией:

относительное удлинение

При растяжении продольная деформация положительна, а при сжатии – отрицательна. Для большинства конструкционных материалов на стадии упругой деформации выполняется закон Гука (4), устанавливающий линейную зависимость между напряжениями и деформациями:

закон гука

где модуль продольной упругости Е, называемый еще модулем упругости первого рода является коэффициентом пропорциональности, между напряжениями и деформациями. Он характеризует жесткость материала при растяжении или сжатии (табл. 1).

Таблица 1

Модуль продольной упругости для различных материалов

модуль продольной упругости для различных материалов

Абсолютная поперечная деформация бруса равна разности размеров поперечного сечения после и до деформации:

абсолютная поперечная деформация бруса

Соответственно, относительную поперечную деформацию определяют по формуле:

относительная поперечная деформация

При растяжении размеры поперечного сечения бруса уменьшаются, и ε’ имеет отрицательное значение. Опытом установлено, что в пределах действия закона Гука при растяжении бруса поперечная деформация прямо пропорциональна продольной. Отношение поперечной деформации ε’ к продольной деформации ε называется коэффициентом поперечной деформации, или коэффициентом Пуассона μ:

коэффициент пуассона

Экспериментально установлено, что на упругой стадии нагружения любого материала значение μ = const и для различных материалов значения коэффициента Пуассона находятся в пределах от 0 до 0,5 (табл. 2).

Таблица 2

Коэффициент Пуассона.

коэффициент пуассона для материалов

Абсолютное удлинение стержня Δl прямо пропорционально продольной силе N:

абсолютное удлинение стержня

Данной формулой можно пользоваться для вычисления абсолютного удлинения участка стержня длиной l при условии, что в пределах этого участка значение продольной силы постоянно. В случае, когда продольная сила N изменяется в пределах участка стержня, Δl определяют интегрированием в пределах этого участка:

Деформации и перемещения при осевом растяжении

Произведение (Е·А) называют жесткостью сечения стержня при растяжении (сжатии).

Механические свойства материалов.

Основными механическими свойствами материалов при их деформации являются прочность, пластичность, хрупкость, упругость и твердость.

Прочность — способность материала сопротивляться воздействию внешних сил, не разрушаясь и без появления остаточных деформаций.

Пластичность – свойство материала выдерживать без разрушения большие остаточные деформации. Неисчезающие после снятия внешних нагрузок деформации называются пластическими.

Хрупкость – свойство материала разрушаться при очень малых остаточных деформациях (например, чугун, бетон, стекло).

Идеальная упругость – свойство материала (тела) полностью восстанавливать свою форму и размеры после устранения причин, вызвавших деформацию.

Твердость – свойство материала сопротивляться проникновению в него других тел.

Рассмотрим диаграмму растяжения стержня из малоуглеродистой стали. Пусть круглый стержень длинной l0 и начальным постоянным поперечным сечением площади A0 статически растягивается с обоих торцов силой F.

растягивание стержня до разрушения

Диаграмма сжатия стержня имеет вид (рис. 10, а)

диаграмма растяжения стали

где Δl = l — l0 абсолютное удлинение стержня; ε = Δl / l0 — относительное продольное удлинение стержня; σ = F / A0 — нормальное напряжение; E — модуль Юнга; σп — предел пропорциональности; σуп — предел упругости; σт — предел текучести; σв — предел прочности (временное сопротивление); εост — остаточная деформация после снятия внешних нагрузок. Для материалов, не имеющих ярко выраженную площадку текучести, вводят условный предел текучести σ0,2 — напряжение, при котором достигается 0,2% остаточной деформации. При достижении предела прочности в центре стержня возникает локальное утончение его диаметра («шейка»). Дальнейшее абсолютное удлинение стержня идет в зоне шейки ( зона местной текучести). При достижении напряжением предела текучести σт глянцевая поверхность стержня становится немного матовой – на его поверхности появляются микротрещины (линии Людерса-Чернова), направленные под углом 45° к оси стержня.

примеры разрушения материалов

Расчеты на прочность и жесткость при растяжении и сжатии.

Опасным сечением при растяжении и сжатии называется поперечное сечение бруса, в котором возникает максимальное нормальное напряжение. Допускаемые напряжения вычисляются по формуле:

формула допускаемые напряжения

где σпред — предельное напряжение (σпред = σт — для пластических материалов и σпред = σв — для хрупких материалов); [n] — коэффициент запаса прочности. Для пластических материалов [n] = [nт] = 1,2 … 2,5; для хрупких материалов [n] = [nв] = 2 … 5, а для древесины [n] = 8 ÷ 12.

Расчеты на прочность при растяжении и сжатии.

Целью расчета любой конструкции является использование полученных результатов для оценки пригодности этой конструкции к эксплуатации при минимальном расходе материала, что находит отражение в методах расчета на прочность и жесткость.

Условие прочности стержня при его растяжении (сжатии):

Условие прочности стержня

При проектном расчете определяется площадь опасного сечения стержня:

площадь при проектном расчёте

При определении допускаемой нагрузки рассчитывается допускаемая нормальная сила:

допускаемая нормальная сила

Расчет на жесткость при растяжении и сжатии.

Работоспособность стержня определяется его предельной деформацией [ l ]. Абсолютное удлинение стержня должно удовлетворять условию:

ограничение абсолютного удлинения стержня

Часто дополнительно делают расчет на жесткость отдельных участков стержня.

Следующая важная статья теории:
Изгиб балки

Источник

Осевое или центральное растяжение (сжатие) относят к простым видам сопротивления. Название этого вида деформации обусловлено тем, что линия действия сил (равнодействующей сил), приложенных к стержню, совпадает с осью стержня (ось стержня проходит через центры тяжести поперечных сечений).

Продольное внутреннее усилие (N) будет положительным при растяжении элемента и отрицательным в случае сжатия.

Продольное внутреннее усилие (N) в любом сечении равно алгебраической сумме проекций всех внешних сил (включая опорные реакции), взятых по одну сторону от сечения, на продольную ось стержня.

Напряжения в поперечных сечениях характеризуют интенсивность внутренних сил в поперечном сечении.

Соотношение (6.1) позволяет вычислить среднее напряжение по площади поперечного сечения. Бернулли были предложены допущения – гипотезы плоских сечений: поперечные сечения, плоские до нагружения остаются плоскими и перпендикулярными продольной оси и после нагружения. В силу принятых гипотез σy=σz=τyx=τyz=0, σx≠0, поэтому напряженное состояние в элементе объёма – линейное (только одно из главных напряжений отлично от нуля), рис. 6.1. Нормальное напряжение в поперечном сечении при данном виде деформации является функцией от продольного внутреннего усилия Nx и зависит от геометрической характеристики поперечного сечения – площади А. Определяют напряжение по формуле

σ=σx=Nx/A. (6.2)

Знак у напряжения определяется знаком продольной силы.

 
 

Рис. 6.1. Схема деформации элементарного параллелепипеда при одноосном растяжении

При растяжении (сжатии) различают абсолютные ∆l и относительные ε деформации. Абсолютная деформация – это разница между длиной стержня до и после деформации, т.е. та величина, на которую он изменил свою длину ∆l=/l1-l/. Относительная деформация – это, как ясно из названия, отношение абсолютной деформации к первоначальной длине стержня ε=∆l/l.

Деформации элементов конструкций, материал которых работает в упругой стадии, определяются на основании закона Гука, записанного в случае одноосного(линейного) напряжённого состояния в следующем виде:

(6.3)

Закон Гука (6.3) устанавливает прямопропорциональную зависимость между действующим в рассматриваемой точке нормальным напряжением и относительной линейной деформацией материала (по направлению ). Коэффициент пропорциональности Е носит название модуля упругости первого рода (модуля продольной упругости, модуля Юнга) и имеет размерность напряжения.

При одноосном растяжении (сжатии) кроме продольной деформации возникают также деформации и в поперечных направлениях, противоположные по знаку деформации (рис. 6.1). Отношение деформации к или к , взятое по абсолютной величине, называется коэффициентом Пуассона (коэффициентом поперечной деформации) ν.

Для изотропных материалов

(6.4)

Коэффициент Пуассона для различных материалов может принимать значения от 0 до 0,5 (для стали обычно = 0,24… …0,33, для алюминиевого сплава – 0,3).

Модуль упругости первого рода и коэффициент Пуассона являются основными характеристиками упругих свойств материала. Они определяются экспериментальным путем. Наиболее просто в техническом отношении осуществляется опыт, в котором Е и определяются по результатам испытания образца на осевое растяжение.

Перемещения сечений происходят в результате деформирования стержня. Перемещения, соответствующие удлинению считаются положительными. Перемещения, вызванные внешними силовыми факторами, определяют с помощью зависимости (6.5).

. (6.5)

В случае, когда в пределах грузового участка внутреннее усилие и жёсткость стержня постоянны, это выражение принимает вид

Перемещения, вызванные изменением температуры, определяются с помощью зависимости

Расчет на прочность и жесткость при осевом растяжении (сжатии).

Для расчета на прочность пользуются условием прочности, которое при данном виде сопротивления имеет вид:

(6.8)

В этих выражениях , , — расчетные сопротивления по нормальным напряжениям для хрупкого и пластичного материала соответственно. Максимальное значение напряжения определяют с помощью эпюры напряжений, полученной через отношения Nx/A.

В расчете на жесткость применяют условия жесткости:

. (6.9)

Первое условие для полного перемещения стержня, а второе — для максимального перемещения сечения. В квадратных скобках приведены допустимые значения. Для определения опасного сечения, в котором возникает, строят эпюру перемещений.

Пример построения эпюр.

Источник