Данные на растяжение и сжатие

Внутренние усилия при растяжении-сжатии.

Осевое (центральное) растяжение или сжатие прямого бруса вызывается внешними силами, вектор равнодействующей которых совпадает с осью бруса. При растяжении или сжатии в поперечных сечениях бруса возникают только продольные силы N. Продольная сила N в некотором сечении равна алгебраической сумме проекции на ось стержня всех внешних сил, действующих по одну сторону от рассматриваемого сечения. По правилу знаков продольной силы N принято считать, что от растягивающих внешних нагрузок возникают положительные продольные силы N, а от сжимающих — продольные силы N отрицательны (рис. 5).

правило знаков для продольных сил

Чтобы выявить участки стержня или его сечения, где продольная сила имеет наибольшее значение, строят эпюру продольных сил, применяя метод сечений, подробно рассмотренный в статье:
Анализ внутренних силовых факторов в статистически определимых системах
Ещё настоятельно рекомендую взглянуть на статью:
Расчёт статистически определимого бруса
Если разберёте теорию в данной статье и задачи по ссылкам, то станете гуру в теме «Растяжение-сжатие» =)

Напряжения при растяжении-сжатии.

Определенная методом сечений продольная сила N, является равнодействующей внутренних усилий распределенных по поперечному сечению стержня (рис. 2, б). Исходя из определения напряжений, согласно выражению (1), можно записать для продольной силы:

напряжения при растяжении-сжатии

где σ — нормальное напряжение в произвольной точке поперечного сечения стержня.


Чтобы определить нормальные напряжения в любой точке бруса необходимо знать закон их распределения по поперечному сечению бруса. Экспериментальные исследования показывают: если нанести на поверхность стержня ряд взаимно перпендикулярных линий, то после приложения внешней растягивающей нагрузки поперечные линии не искривляются и остаются параллельными друг другу (рис.6, а). Об этом явлении говорит гипотеза плоских сечений (гипотеза Бернулли): сечения, плоские до деформации, остаются плоскими и после деформации.

механизм деформации растяжения

Так как все продольные волокна стержня деформируются одинаково, то и напряжения в поперечном сечении одинаковы, а эпюра напряжений σ по высоте поперечного сечения стержня выглядит, как показано на рис.6, б. Видно, что напряжения равномерно распределены по поперечному сечению стержня, т.е. во всех точках сечения σ = const. Выражение для определения величины напряжения имеет вид:

формула напряжения

Таким образом, нормальные напряжения, возникающие в поперечных сечениях растянутого или сжатого бруса, равны отношению продольной силы к площади его поперечного сечения. Нормальные напряжения принято считать положительными при растяжении и отрицательными при сжатии.

Деформации при растяжении-сжатии.

Рассмотрим деформации, возникающие при растяжении (сжатии) стержня (рис.6, а). Под действием силы F брус удлиняется на некоторую величину Δl называемую абсолютным удлинением, или абсолютной продольной деформацией, которая численно равна разности длины бруса после деформации l1 и его длины до деформации l

абсолютное удлинение

Отношение абсолютной продольной деформации бруса Δl к его первоначальной длине l называют относительным удлинением, или относительной продольной деформацией:

относительное удлинение

При растяжении продольная деформация положительна, а при сжатии – отрицательна. Для большинства конструкционных материалов на стадии упругой деформации выполняется закон Гука (4), устанавливающий линейную зависимость между напряжениями и деформациями:

закон гука

где модуль продольной упругости Е, называемый еще модулем упругости первого рода является коэффициентом пропорциональности, между напряжениями и деформациями. Он характеризует жесткость материала при растяжении или сжатии (табл. 1).

Таблица 1

Модуль продольной упругости для различных материалов

модуль продольной упругости для различных материалов

Абсолютная поперечная деформация бруса равна разности размеров поперечного сечения после и до деформации:

абсолютная поперечная деформация бруса

Соответственно, относительную поперечную деформацию определяют по формуле:

относительная поперечная деформация

При растяжении размеры поперечного сечения бруса уменьшаются, и ε’ имеет отрицательное значение. Опытом установлено, что в пределах действия закона Гука при растяжении бруса поперечная деформация прямо пропорциональна продольной. Отношение поперечной деформации ε’ к продольной деформации ε называется коэффициентом поперечной деформации, или коэффициентом Пуассона μ:

коэффициент пуассона

Экспериментально установлено, что на упругой стадии нагружения любого материала значение μ = const и для различных материалов значения коэффициента Пуассона находятся в пределах от 0 до 0,5 (табл. 2).

Таблица 2

Коэффициент Пуассона.

коэффициент пуассона для материалов

Абсолютное удлинение стержня Δl прямо пропорционально продольной силе N:

абсолютное удлинение стержня

Данной формулой можно пользоваться для вычисления абсолютного удлинения участка стержня длиной l при условии, что в пределах этого участка значение продольной силы постоянно. В случае, когда продольная сила N изменяется в пределах участка стержня, Δl определяют интегрированием в пределах этого участка:

Данные на растяжение и сжатие

Произведение (Е·А) называют жесткостью сечения стержня при растяжении (сжатии).

Механические свойства материалов.

Основными механическими свойствами материалов при их деформации являются прочность, пластичность, хрупкость, упругость и твердость.

Прочность — способность материала сопротивляться воздействию внешних сил, не разрушаясь и без появления остаточных деформаций.

Пластичность – свойство материала выдерживать без разрушения большие остаточные деформации. Неисчезающие после снятия внешних нагрузок деформации называются пластическими.

Хрупкость – свойство материала разрушаться при очень малых остаточных деформациях (например, чугун, бетон, стекло).

Идеальная упругость – свойство материала (тела) полностью восстанавливать свою форму и размеры после устранения причин, вызвавших деформацию.

Твердость – свойство материала сопротивляться проникновению в него других тел.

Рассмотрим диаграмму растяжения стержня из малоуглеродистой стали. Пусть круглый стержень длинной l0 и начальным постоянным поперечным сечением площади A0 статически растягивается с обоих торцов силой F.

растягивание стержня до разрушения

Диаграмма сжатия стержня имеет вид (рис. 10, а)

диаграмма растяжения стали

где Δl = l — l0 абсолютное удлинение стержня; ε = Δl / l0 — относительное продольное удлинение стержня; σ = F / A0 — нормальное напряжение; E — модуль Юнга; σп — предел пропорциональности; σуп — предел упругости; σт — предел текучести; σв — предел прочности (временное сопротивление); εост — остаточная деформация после снятия внешних нагрузок. Для материалов, не имеющих ярко выраженную площадку текучести, вводят условный предел текучести σ0,2 — напряжение, при котором достигается 0,2% остаточной деформации. При достижении предела прочности в центре стержня возникает локальное утончение его диаметра («шейка»). Дальнейшее абсолютное удлинение стержня идет в зоне шейки ( зона местной текучести). При достижении напряжением предела текучести σт глянцевая поверхность стержня становится немного матовой – на его поверхности появляются микротрещины (линии Людерса-Чернова), направленные под углом 45° к оси стержня.

примеры разрушения материалов

Расчеты на прочность и жесткость при растяжении и сжатии.

Опасным сечением при растяжении и сжатии называется поперечное сечение бруса, в котором возникает максимальное нормальное напряжение. Допускаемые напряжения вычисляются по формуле:

формула допускаемые напряжения

где σпред — предельное напряжение (σпред = σт — для пластических материалов и σпред = σв — для хрупких материалов); [n] — коэффициент запаса прочности. Для пластических материалов [n] = [nт] = 1,2 … 2,5; для хрупких материалов [n] = [nв] = 2 … 5, а для древесины [n] = 8 ÷ 12.

Расчеты на прочность при растяжении и сжатии.

Целью расчета любой конструкции является использование полученных результатов для оценки пригодности этой конструкции к эксплуатации при минимальном расходе материала, что находит отражение в методах расчета на прочность и жесткость.

Читайте также:  Как избежать растяжения запястья

Условие прочности стержня при его растяжении (сжатии):

Условие прочности стержня

При проектном расчете определяется площадь опасного сечения стержня:

площадь при проектном расчёте

При определении допускаемой нагрузки рассчитывается допускаемая нормальная сила:

допускаемая нормальная сила

Расчет на жесткость при растяжении и сжатии.

Работоспособность стержня определяется его предельной деформацией [ l ]. Абсолютное удлинение стержня должно удовлетворять условию:

ограничение абсолютного удлинения стержня

Часто дополнительно делают расчет на жесткость отдельных участков стержня.

Следующая важная статья теории:
Изгиб балки

Источник

Пример решения задачи на растяжение и сжатие

.

Условие задачи на растяжение и сжатие

Стальной стержень (модуль Юнга кН/см2) с размерами см; см, см и площадью поперечного сечения нижнего участка см2, а верхнего – см2 нагружен внешними осевыми силами кН и кН. Построить эпюры продольных сил и нормальных напряжений . Оценить прочность стержня, если предельное напряжение (предел текучести) кН/см2, а допускаемый коэффициент запаса . Найти удлинение стержня .

Расчетная схема для задачи на растяжение и сжатие

рис 3.2

Решение пример задачи на растяжение и сжатие

Определяем значение опорной реакции , возникающей в заделке

Учитывая, что , направим опорную реакцию вниз. Тогда из уравнения равновесия находим:

кН.

Строим эпюру продольных сил

Разбиваем длину стержня на три участка. Границами участков являются сечения, в которых приложены внешние силы и (или) изменяется размер поперечного сечения стержня.

Воспользуемся методом сечений. Делаем по одному сечению в произвольном месте каждого из трех участков стержня.

Cечение 1 – 1. Отбросим (или закроем листком бумаги) верхнюю часть стержня (рис. 3.2, б). Само сечение 1 – 1 мысленно считаем неподвижным. Мы видим, что внешняя сила растягивает рассматриваемую нижнюю часть стержня. Отброшенная нами верхняя часть стержня противодействует этому растяжению. Это противодействие мы заменим внутренней продольной силой , направленной от сечения и соответствующей растяжению. Разрушения стержня не произойдет только в том случае, если возникающая в сечении 1 – 1 внутренняя продольная сила уравновесит внешнюю силу . Поэтому очевидно, что

кН.

Сечение 2 – 2. Внешняя сила растягивает рассматриваемую нами нижнюю часть стержня, а сила ее сжимает (напомним, что 2 – 2 мы мысленно считаем неподвижным). Причем, согласно условию задачи, . Чтобы уравновесить эти две силы, в сечении 2 – 2 должна возникнуть внутренняя сила , противодействующая сжатию, то есть направленная к сечению. Она равна:

кН.

Сечение 3 – 3. Отбросим теперь часть стержня, расположенную ниже этого сечения. Внутренняя продольная сила должна уравновесить внешнюю (реактивную) сжимающую силу . Поэтому она направлена к сечению и равна:

кН.

Легко убедиться в том, что полученный результат не изменится, если мы отбросим не нижнюю, а верхнюю часть стержня. В этом случае продольная сила также противодействует сжатию. Она равна:

кН.

При построении эпюры продольных сил будем пользоваться следующим правилом знаков: внутренняя продольная сила, возникающая в поперечном сечении стержня, считается положительной, если она противодействует растяжению стержня, и отрицательной, если она противодействует его сжатию. Оно вводится для того, чтобы можно было наглядно видеть, какая часть стержня испытывает деформацию растяжения, а какая часть – деформацию сжатия. Это обстоятельство может оказаться крайне важным, в частности для стержней из хрупкого материала, которые имеют разные допускаемые напряжения на растяжение и на сжатие.

Таким образом, мы установили, что в любом сечении нижнего участка стержня внутренняя продольная сила противодействует растяжению и равна кН. В любом сечении среднего и верхнего участков стержня имеет место деформация сжатия, поэтому кН.

Для построения эпюры продольных сил проводим тонкой линией ось, параллельную оси стержня z (рис. 3.2, д). Вычисленные значения продольных сил в выбранном масштабе и с учетом их знака откладываем от этой вертикальной оси. В пределах каждого из участков стержня продольная сила остается постоянной, поэтому мы как бы «заштриховываем» горизонтальными линиями соответствующий участок.

Отметим, что каждая линия «штриховки» (то есть ордината эпюры) в принятом масштабе дает значение продольной силы в соответствующем поперечном сечении стержня.

Полученную эпюру обводим жирной линией.

Анализируя полученную эпюру, мы видим, что в местах приложения внешних сил на эпюре имеет место скачкообразное изменение продольной силы на величину, равную значению соответствующей внешней силы. Причем изменение поперечного размера стержня, как это видно из рис. 3.2, д, никак не сказывается на характере эпюры .

Строим эпюру нормальных напряжений

Нормальное напряжение, возникающее в k–м поперечном сечении стержня при растяжении (сжатии), вычисляется по следующей формуле

,

где и – продольная сила и площадь k–го поперечного сечения стержня соответственно.

В первом поперечном сечении стержня нормальное напряжение равно

кН/см2,

во втором –

кН/см2,

в третьем –

кН/см2.

Строим по вычисленным значениям эпюру (рис. 3.2, е). В пределах каждого из участков стержня напряжения постоянны, то есть эпюра напряжений параллельна оси. Заметим, что в отличие от эпюры N, на эпюре «скачок» имеет место не только в местах приложения внешних сил, но и там, где происходит изменение размеров поперечного сечения стержня.

Оцениваем прочность стержня

Сопоставляем наибольшее (по модулю) нормальное напряжение , которое в нашем примере возникает во втором сечении стержня, с допускаемым напряжением . Напомним, что допускаемое напряжение представляет собой долю от предельного напряжения , то есть от напряжения, при котором начинается разрушение материала. Разрушение стали, как пластичного материала, начинается при появлении значительных остаточных деформаций. Поэтому для стали предельное напряжение равно пределу текучести: . Тогда

кН/см2.

Условие прочности имеет вид . В нашем случае

кН/см2 > кН/см2,

следовательно, прочность стержня на втором участке не обеспечена.

Таким образом, площадь поперечного сечения стержня на втором участке, равную см2, нам необходимо увеличить.

Несложный анализ показывает, что на других участках стержня условие прочности выполняется.

Из условия прочности определяем требуемую площадь поперечного сечения стержня на втором участке:

см2.

Принимаем на втором участке см2.

Вычисляем удлинение всего стержня

При переменных по длине стержня значениях продольной силы и площади поперечного сечения удлинение вычисляется по формуле

,

где E – модуль Юнга, а – длина соответствующего участка стержня.

Тогда

см.

Таким образом, длина стержня уменьшается на мм.

Задача по сопромату на растяжение и сжатие для самостоятельного решения

Условие задачи на растяжение и сжатие

Стальной стержень (модуль Юнга кН/см2) находится под действием внешних осевых сил и (рис. 3.1). Построить эпюры продольных сил и нормальных напряжений . Оценить прочность стержня, если предельное напряжение (предел текучести) кН/см2, а допускаемый коэффициент запаса . Найти удлинение стержня .

Схемы для задачи на растяжение и сжатие

Исходные данные к задаче на растяжение и сжатие

Номер схемы

F, см2

a, м

b, м

c, м

P, кН

1

2,0

1,2

1,4

1,6

11

2

2,2

1,4

1,6

1,4

12

3

2,4

1,8

1,6

1,2

13

4

2,6

1,6

2,0

1,0

14

5

2,8

2,0

1,8

1,2

15

6

3,0

2,2

1,6

1,4

16

7

3,2

2,4

1,4

1,6

17

8

3,4

2,6

1,2

1,8

18

9

3,6

2,8

1,0

1,4

19

3,8

2,4

1,6

1,2

20

Читайте также:  Противоотечная мазь при растяжении связок

Источник

Данные на растяжение и сжатие

Стандартные
испытания прочностных и пластических свойств металлов

Механические
испытания в зависимости от характера действия
нагрузки во времени могут быть:

статические,
при которых нагружение производится медленно и
нагрузка возрастает плавно от нуля до некоторой максимальной

величины или
остается постоянной длительное время при малой
скорости деформации;

динамические,
при которых нагрузка на образец возрастает мгновенно
при большой скорости деформации;

—  

повторно-переменные (или циклические), усталостные,
при которых
изменяются величина и направление действия нагрузки. По результатам
испытаний определяют число циклов до разрушения при разных значениях напряжений
или то предельное напряжение, которое образец выдерживает без разрушения в
течение опреленного
числа циклов нагружения.

Кроме того,
проводят испытания на
ползучесть и
длительную прочность
при повышенных температурах с целью определения жаропрочности металла или
сплава.

При
статических, динамических и усталостных испытаниях, а также
при испытаниях на твердость и жаропрочность определяют
стандартные механические свойства металлов и сплавов: прочностные характеристики
— предел пропорциональности, продел упругости, предел текучести, временное
сопротивление,
пластические
характеристики — относительное удлинение и относительное сужение, а также
твердость, ударную вязкость, предел
выносливости, предел ползучести или предел длительной прочности.

Испытание на растяжение

При испытании на растяжение, согласно ГОСТ
1497, определяют сопротивление металла малым пластическим деформациям,
характеризующееся пределом пропорциональности σпц, пределам упругости
σу и пределом текучести σт (или σ0,2),
а также сопротивление значительным пластическим деформациям, которое выра жают
временным сопротивлением σв.

При растяжении
определяют и пластичность металла, то есть величину
пластической деформации до разрушения, которая может
быть оценена относительным удлинением образца

δ
и его
относительным
сужением ψ (после разрыва образца).

Для испытания
на растяжение используют стандартные образцы
(см. ниже). Машина для испытаний снабжена устройством, записывающим
диаграмму растяжения.

Диаграмма
растяжения показывает зависимость между растягивающей
нагрузкой, действующей на образец, и его деформацией.
На
диаграмме по оси ординат записывают нагрузку

Р,
а по оси абсцисс —
абсолютное удлинение образца Δl
(Δl =



lо, где lх
и lо — текущая
(в данный момент времени) и начальная длины образца) — Рис.
1

 Данные на растяжение и сжатие

Рис. 1. Схема
диаграммы растяжения: изменение удлинения образца в зависимости от нагрузки

Кривая
изменения абсолютного удлинения Δl
в зависимости
от
прилагаемой нагрузки

Р
при растяжении состоит из прямолинейного 
участка
ОА
и криволинейного

АВ,
отвечающего переходу в область
пластических (остаточных) деформаций и характеризуемой постепенным уменьшением
тангенса угла наклона кривой к оси
абсцисс (см. Рис.
1).

Пластической
называют деформацию, остающуюся после снятия
нагрузки

(кроме
того, наблюдается обратимая пластическая деформация,
которая,
как и упругая, исчезает после снятия нагрузки).
Величина остаточной деформации в момент раз
ру­шения (удлинение, сужение) служит мерой пластичности материала.
Если величина пластической деформации до разрушении мала,
то материал называют хрупким. Пластическая деформация
предшествует любому виду разрушения (вязкому или квазихрупкому),
но при квазихрупком разрушении она весьма мала, локализована
в микро- и субмикрообъемах и не выявляется при обычных
методах измерения макродеформации. В этом последнем
случае
необходимо изыскание такиx
условий
испытания (скорости нагружения,температуры испыта­нии и т. п.), при которых
можно было
бы выявить пластичность материала.

Для
возможности сравнения результатов
испытаний различных но размерам образцов целесооб­разно установить связь между
удельными и относительными ве­личинами, т. е. между условным напряжением

σ,
равным

P/F0,
где

P

растягивающая нагрузка (сила),
F0

плошадь поперечного се­чения образца до испытания, и относительным удлинением

δ, равным Δl/I0,
где Δl
— абсолютное уд- шпение образца;

I0
— длина образца до испытания. Так как значе­нии

Р
и Δl
делятся
на постоянные для данных условий испытания величины,
то вид диаграммы, приведенной на Рис.
1, не меняется
(отличается только масштабом) при переходе от координат

P
– Δl
 к
координатам
σ

δ.

Напряжения
ниже точки

А
практически не вызывают измери­мой остаточной деформации и относительно этой
точки могут быть
установлены (с определенным допуском на точность измеря­емых деформаций) предел
упругости
σу,
а также предел пропорци­ональности σпц.
Здесь и далее напряжения получаются делением соответствующей нагрузки на

F0

плошадь поперечного сечения образца до испытания.

Предел
упругости
σу
— условное напряжение, соответствующее появлению остаточных деформаций
определенной заданной вели­чины (0,05; 0,001; 0,003; 0,005%); допуск на
остаточную деформа­цию указывается в индексе при σу.

Предел
пропорциональности
σпц
— условное напряжение, соответствущее
отклонениям от линейного хода кривой деформации (от
закона Гука), задаваемым определенным допуском (например, увеличением тангенса
угла наклона кривой деформации к оси на­пряжения на 25 или 50% при переходе от
прямолинейного участка к криволинейному).

Следует
отметить, что для реальных
поликристоллических металлов
определение
σу
и σпц
представляет значительные методические
трудности, так как предусматривает измерение очень малых

деформаций.
Поэтому на практике чаще обращаются к такой характеристике,
как условный предел текучести.

Условный
предел текучести
— это условное напряжение, при котором
остаточная деформация достигает определенной величина (обычно

0,2%
от рабочей длины образца; тогда условный
предел текучести
обозначают как
σ0,2).
Величину
σ0,2

определяют,
правило, для материалов, у которых на диаграмме отсутвует
площадка или зуб текучести.

В тех случаях,
когда диаграмма растяжения имеет площадку текучести
(Рис.
2,

а),
измеряют
физический
предел текучести
σт,
условное напряжение, соответствующее наименьшей нагрузке
площадки текучести, когда деформация образца происходит
увеличения нагрузки. Иногда распространение деформации по
длине образцов из пластичных материалов при напряжениях, отвечающих
площадке текучести, носит волнообразный характер:
вначале образуется местное утонение сечения, затем это

утононение
переходит на соседний объем материала и этот процесс разшнми ся
до тех пор, пока в результате распространения такой волны

не возникает
общее равномерное удлинение, отвечающее площадке
текучести. Когда имеется зуб текучести (Рис.
2,

б),
вводят
понятия
о верхнем σвт
и нижнем σнт
пределах текучести.

Данные на растяжение и сжатиеДанные на растяжение и сжатие

Рис. 2. Схемы
диаграмм растяжения металлов, дающих площадку (а) зуб
(б)
текучести

Если при
испытании образцов, например на растяжение, не

возникает локализованной деформации (не образуется шейки

местное сужение поперечного сечения), то образец из хрупких металлов
разрушается при какой-то максимальной нагрузке, отвечающей точке

В
на Рис.
1. Деление этой нагрузки на площадь начального поперечного сечения дает
разрушающее напряжение, называемое

Читайте также:  Мази для лечения растяжения лодыжки

временным
сопротивлением
σb
(это условное напряжение, соответствующее наибольшей нагрузке, выдерживаемой образцом).
В тех случаях, когда окончание растяжения сопровождается
местным утонением
образца (образованием шейки), диаграмма
растяжения имеет вид, изображенный на Рис.
2, т. е. нагрузка
в момент разрыва пластичного металла и напряжение, отнесенное
к исходному сечению (в точке
D),
могут
быть меньше, чем напряжение в какой-то предыдущий момент растяжения. Но и и этом
случае временное сопротивление определяется применительно
к точке

В,
т. е. относительно максимальной нагрузки, момент достижения которой практически
совпадает с началом образования шейки в образце из пластичного материала. Появление
шейки определяет переход от равномерной деформации всей  рабочей части
образца к сосредоточенной деформации в определенном сечении.

При переходе в
область пластических деформаций (правее точки
Ана диаграмме
Рис.
1) изменения поперечного сечения образца
становятся уже значительными и отнесение нагрузки к исходному
(до деформации) сечению
F0
дает лишь условные напряжения.
Если учитывать изменение сечения при деформации и относить
нагрузку не к исходному сечению, а к сечению в каждый дан­ный момент деформации

Fx,
то
получают

истинные
напряжения.
Эти последние,
естественно, отличаются от условных напряжений и тем
больше, чем пластичнее материал (чем сильнее изменяется сечение
в ходе деформации относительно исходного). Соответственно
изменяется вид диаграммы растяжения, которая схематично
показана на Рис.
3. В случае хрупких материалов (чугун, литые алюминиевые
сплавы и др.) различие между истинными и услов­ными напряжениями может быть
небольшим.

По

диаграмме
растяжения, как было отмечено выше, можно судить
и о пластичности металла, которая характеризуется относительным
удлинением после разрыва

δ
и относительным сужением
площади
сечения у образца.

Под

относительным
удлинением

δ понимают отношение абсолютного
удлинения образца после разрыва Δl
= lк — lо (где lк — конечная
длина образца) к его начальной расчетной длине
lо,
выри женное в процентах, т. е.

δ
=  (lк
— lо)*100%/lо

В случае
испытания «коротких» (пятикратных) образцов (см.
ниже)
относительное удлинение обозначают

δ5,
в случае

«длинных»
(десятикратных) –
δ10.

Относительное
сужение после разрыва

ψ

представляет собой
oтношение
уменьшения площади поперечного сечения разорванного
образца
ΔF=

F0

FK
(где

FK

минимальная площадь поперечного сечения образца после его разрыва) к
первоначальной площади
поперечного сечения

Fo,
выраженное в процентах, т. е.


Ψ
= (
F0

FK)*100%/
F0

При расчете
режимов обжатий в процессах обработки меча им» давлением чаще всего используют
показатель
δ.

Тангенс угла
наклона прямой

ОА
к оси абсцисс (см. Рис.
1)
характеризует

модуль
упругости материала

Е
= σ
/
δ

(где
δ

— относительная
деформация, равная Δl/l0).
Модуль упругости E определяет
жесткость материала:
интенсивность увеличения напряжения
по мере увеличении упругой деформации. Физический
смысл

Е
сводится к тому, что он
характеризует сопротивляемость
металла упругой деформации.
Модуль упругости
практически не зависит от структуры
металла и определяется
силами межатомной связи.
Все другие механические свойства
являются структурно чувствительными
и изменяются в зависимости
от структуры в широких
пределах.

 Данные на растяжение и сжатие

Рис. 3. Условное изображение диаграммы растяжения (сплошная линия) и диаграммы
истинных напряжений (штриховая линия)

Следует
отметить, что закон пропорциональности между на­пряжением и деформацией является
справедливым лишь в первом приближении. При точных измерениях даже при небольших
на­пряжениях в упругой области наблюдаются отклонения от закона
пропорциональности. Это явление называют
неупругостъю.

Оно
проявляется в том, что деформация, оставаясь обратимой, отстает
по фазе
от действующего напряжения. В связи с этим при нагрузке-разгрузке
на диаграмме растяжения вместо прямой линии получается петля гистерезиса, так
как линии нагрузки и разгрузки не
совпадают между собой.

Механические
свойства металлов в испытаниях на растяжение определяют, используя стандартные
образцы, общий вид которых показан
на Рис.
4.

Необходимо
строго соблюдать определенные соотношения между
начальной расчетной длиной образца l0 и начальной площа­дью
поперечного сечения в рабочей части образца

F0.
Используют образцы двух видов: цилиндрические и плоские. Оба вида образ­ном для
испытания на растяжение применяют с начальной расчет­ной длиной lо = 5,65√F0
или lо = 11,3√F0 диаметром

do
=
3…25 мм или
толщиной

ао
= 0,5. ..25 мм и шириной
b0
= 20…30 мм. При ном образцы с расчетной длиной lо = 5, √F0
именуются «корот­кими», а образцы с lо = 11,3 √F0 —
«длинными», причем примене­ние первых предпочтительнее. Литые образцы и образцы
из хруп­ких металлов допускается изготавливать с начальной расчетной длиной lо =
2,82√F0.

В случае
цилиндрических образцов в качестве основных приме­няют образцы с диаметром

do
=

10 мм
и начальной расчетной дли­ной
l0
=

5do

(короткие) и lо =
10d0
(длинные); в первом случае по­ручаемое значение относительного удлинения после
разрыва обозначают

δ5, во втором

δ10.

Данные на растяжение и сжатие

Рис. 4. Общий
вид стандартных образцов для испытания на растяжение:

а -цилиндрический
образец;
б —
плоский

Испытание на сжатие

Испытание на
сжатие обычно применяют для определения механических
свойств хрупких материалов. Цилиндрические образцы
диаметром 10…25 мм и высотой, равной диаметру, подвергают
сжатию, фиксируя при этом упругие и остаточные деформации Торцовые поверхности
образцов должны быть отшлифованы, плоскопараллельными
и перпендикулярными к оси
образца. Большое
влияние на результаты испытания оказывает трение на торцах об
разцов. Для уменьшения трения применяют специальные прокладки (свинцовые) или
смазку торцов.

Испытание на
сжатие производят на тех же машинах, что и ж пытание на растяжение, с
использованием приспособлений (реверсов)
для превращения растягивающей нагрузки в сжимающую.
При испытании на сжатие получают диаграмму сжатия (Рис.
5), по
которой определяют основные механические характеристики испытуемого
материала. В процессе сжатия образца из пластичного
металла при напряжении ниже предела текучести металл ведет так же, как
и при растяжении. После достижения предела текучести
образец пластически деформируется, принимая бочкообразную
форму.
При смазке торцов или наличиимягких
прокладок на торцах
деформация образца по высоте получается более равномерной.

При испытании
на сжатие пластичных металлов (см. рис.
5 кривые

2
и

3)
обычно определяют
пределы пропорциональности
и текучести как при испытании на растяжений,
а степень осадки (относительную
деформацию) находят
из
соотношения:


ε
= (h0-h1)*100%/h0,

где hо и

h1

высоты образца

до

и после
осадки.

Данные на растяжение и сжатие

Рис. 5.
Сравнительные схемы диаграмм сжатия различных металлов:

1 —
чугун;
2
— медь;
3 —

сталь

В случае
испытания на сжатие хрупких металлов (см., например, Рис.
5, кривая
1) достижение
в точке

В
напряжения σв сопровождается разрушением образца. Разрушение
образца обычно происходит под углом 45° к линии действия сжимающей силы.

Источник