Центральным растяжением сжатием называется вид деформации при которой

Центральным растяжением (или центральным сжатием) называется такой вид деформации, при котором в поперечном сечении бруса возникает только продольная сила (растягивающая или сжимающая), а все остальные внутренние усилия равны нулю. Иногда центральное растяжение (или центральное сжатие) кратко называют растяжением (или сжатием) .

Правило знаков
Растягивающие продольные усилия принято считать положительными, а сжимающие — отрицательными.

Рассмотрим прямолинейный брус (стержень), нагруженный силой F

Растяжение стержня

Определим внутренние усилия в поперечных сечениях стержня методом сечения.

Напряжение — это внутренне усилие N, приходящее на единицу площади A. Формула для нормальных напряжений σ при растяжении
$$sigma = frac{N}{A} $$

Так как поперечная сила при центральном растяжении-сжатии равна нулю, то и касательное напряжение [math]tau=0[/math].

Условие прочности при растяжении-сжатии
$$ max; sigma = {Biggvertfrac{N}{A}Biggvert} leq [sigma] $$

Дифференциальная зависимость внутренних усилий от распределенной нагрузки:

dN =q·dx

Определение внутренних усилий и напряжений

Рассмотрим вариант определения внутренних сил под действием произвольных сосредоточенных и распределенных сил, направленных вдоль стержня.

Продольное усилие N равняется сумме сил (сосредоточенных Fi и распределенных qi), расположенных по одну сторону от рассматриваемого сечения.

Общая формула для определения продольного усилия в произвольном сечении
$$N(x)=sum F _i + sum int q _i(x)cdot dx $$

Примем, что распределенная нагрузка постоянная. Тогда можно записать
$$N(x)=sum F _i + sum t q _i(x)cdot(x-L _{q _{i}н}) – sum t q _i(x)cdot(x-L _{q _{i}k}),$$
где Lqiн и Lqiк – расстояние от начала координат до начала и конца распределенной силы qi

Для эпюр продольных сил характерны определенные закономерности, знание которых позволяет оценить правильность выполненных построений.

  • Эпюры N всегда прямолинейные.
  • На участке, где нет распределенной нагрузки, эпюра N — прямая, параллельная оси; а на участке под распределенной нагрузкой — наклонная прямая.
  • Под точкой приложения внешней сосредоточенной силы на эпюре обязательно должен быть скачок (разрыв первого рода) на величину этой силы.

Правильность построения эпюры обеспечивается также надлежащим выбором так называемых характерных сечений, то есть тех сечений, в которых величина внутренней силы обязательно должна быть определена. К характерным сечениям относятся:

  • сечения, расположенные бесконечно близко по обе стороны от точек приложения сосредоточенных сил и моментов;
  • сечения, расположенные в начале и в конце каждого участка с распределенной нагрузкой;
  • сечения, расположенные бесконечно близко к опорам, а также на свободных концах.

Пример определения продольных усилий

Пусть стержень длиной L=15 нагружен двумя сосредоточенными растягивающими силами F1=7 в точке FL1=14 и F2=2 в точке FL2=6. Стержень загружен сжимающей распределенной силой q=-1.2, приложенной от начала стержня до Lq1=12. Нужно построить эпюру продольных усилий.

Для определения усилий воспользуемся пакетом SciLab ( см. также здесь).

Создадим две маленькие функции и запишем их в файл n_calc.sce

function [N]=Nx_calc(x,q,F)
// определение суммы всех сил справа от сечения x
Fsum=0;
r=size(F,’r’);
for i=1:r
Fsum=Fsum+F(i,2)*(x<F(i,1));
end;
q_sum=0;
r=size(q,’r’);
for i=1:r
q_sum=q_sum+q(i,3)*(x-q(i,1))*(x<q(i,1))-q(i,3)*(x-q(i,2))*(x<q(i,2));
end;
N=Fsum+q_sum;
endfunction
//—-
function [x,y]=N_calc(q,F,L,step)
// формирования таблицы усилий в стержне с шагом step
x=[0:step:L,F(:,1)’] // знак ‘ — транспонирование матрицы
x=gsort(x,’g’,’i’);
y=[];
for i=1:length(x)
y(i)=Nx_calc(x(i),q,F);
end
endfunction

Задаем начальные условия и строим эпюру продольных сил

// подключение нашей функции
exec(‘n_calc.sce’)
// распределенная нагрузка [начало,конец, интенсивность нагрузки]
q=[0, 12, -1.2];
// сосредоточенная нагрузка [точка приложения, значение силы]
F=[14, 4; 6, 2];
// Длина
L=15;
// шаг задаем очень маленьким
step=0.1;
// вычисление
[x,y]=N_calc(q,F,L,step);
// построение эпюры
plot2d(x,y)
plot2d3(x,y)
xgrid(3);

С помощью функции Nx_calc можно определить усилие N в любом сечении x.

Так как Scilab, GNU Octave и MATLAB имеют очень близкие языки, то для решения этой задачи в этих пакетах можно воспользоваться выше приведенным алгоритмом.

2й вариант

Приведем еще один вариант определения продольных усилий при центральном растяжении-сжатии с помощью языка программирования R.

# Центральное растяжение-сжатие
#
# определение суммы всех сил справа от сечения Xi
Nx_calc <- function (Xi,q,aF) {
Nsum <- function(Fx, x) {N<-Fx[2]*(x<=Fx[1]);}
Fsum<-sum(apply(aF,1, Nsum, x=Xi));
q_sum <- function(qx,x) {N<-qx[3]*(x-qx[1])*(x<=qx[1])-qx[3]*(x-qx[2])*(x<=qx[2]); }
qsum<-sum(apply(q,1, q_sum, x=Xi));
N<-Fsum+qsum;
}
 
 
# формирования таблицы усилий в стержне с шагом step
# и отображение эпюры
N_calc <- function (q,F,L,step) {
#превращаем вектор в матрицу
Fi<-matrix(F,ncol=2,byrow=TRUE);
dimnames(Fi)[[2]] <- c(‘x’,’F’);
#проверяем результат
print(Fi);
qi<-matrix(q,ncol=3,byrow=TRUE);
dimnames(qi)[[2]] <- c(‘Ln’,’Lk’,’q’);
print(qi);
 
x<- c(seq(from=0, to=L, by=step),Fi[,1]);
 
x<-sort(x);
y<- sapply(x,Nx_calc, q=qi, aF=Fi);
# рисуем
plot(x,y,type=»h»,ylab=»Усилие», col=»blue»,main=»Эпюра усилий N»);
lines(x,y);
abline(h=0);
# добавим точки, где приложены силы
xf<-Fi[,1];
yf<- sapply(xf,Nx_calc, q=qi, aF=Fi);
points(xf,yf);
text(xf,yf,yf,adj=1,pos=4);
}
 
# формирования таблицы усилий в стержне с шагом step
# и отображение эпюры (Усовершенствованный вариант №2)
N_calc2 <- function (q,F,L) {
#превращаем вектор в матрицу
Fi<-matrix(F,ncol=2,byrow=TRUE);
dimnames(Fi)[[2]] <- c(‘x’,’F’);
#проверяем результат
print(‘Сосредоточенные силы Fi’);print(Fi);
qi<-matrix(q,ncol=3,byrow=TRUE);
dimnames(qi)[[2]] <- c(‘Ln’,’Lk’,’q’);
print(‘Распределенные нагрузки’);print(qi);
 
z<-Fi[,1];
x1<-numeric();
eps=L/1000; # малая величина
for ( i in 1:length(z) ) {
x1<-c(x1,z[i]-eps,z[i],z[i]+eps)
}
x<- c(0,L,qi[,1],qi[,2],x1);
x<-sort(x);
y<- sapply(x,Nx_calc, q=qi, aF=Fi);
# рисуем
plot(x,y,type=»l»,ylab=»Усилие», main=»Эпюра усилий N», sub=’вариант №2′ );
abline(h=0);
polygon(c(x,L,0),c(y,0,0),col=’gray’)
# добавим точки, где приложены силы
xf<-Fi[,1];
yf<- sapply(xf,Nx_calc, q=qi, aF=Fi);
points(xf,yf);
text(xf,yf,yf,adj=1,pos=4);
# Определяем максимальное сжимающее и растягивающее усилие
y_max<-max(y);
y_min<-min(y);
if ( y_max > 0 ) {
x_max= x[which.max(y)];
print(sprintf(«Максимальное растягивающее значение N=%f при x=%f»,y_max,x_max ) );
points(x_max,y_max, col=»red»);
text(x_max,y_max,y_max,col=’blue’,pos=4);
}
if ( y_min < 0 ) {
x_min= x[which.min(y)];
print(sprintf(«Максимальное сжимающее значение N=%f при x=%f»,y_min,x[which.min(y)] ) );
points(x_min,y_min, col=»red»);
text(x_min,y_min,y_min,col=’blue’,adj=1,pos=4);
}
}

Читайте также:  Стойкость к растяжению кабеля

Исходный код функций

Ниже приведен сеанс построения эпюры N в R

> source(«N_calc.r», echo=TRUE);
 
> # Центральное растяжение-сжатие
> #
> # определение суммы всех сил справа от сечения Xi
> Nx_calc <- function (Xi,q,aF) {
+ Nsum <- function(Fx, …. [TRUNCATED]
 
> # формирования таблицы усилий в стержне с шагом step
> # и отображение эпюры
> #
> N_calc <- function (q,F,L,step) {
+ #превращаем вектор в матри …. [TRUNCATED]
 
> # формирования таблицы усилий в стержне с шагом step
> # и отображение эпюры (Усовершенствованный вариант №2)
> N_calc2 <- function (q,F,L) {
+ # …. [TRUNCATED]
>
> L=15; # Длина
> step=0.1; # шаг задаем очень маленьким
> # распределенная нагрузка [начало,конец, интенсивность нагрузки]
> q<-c(0, 12, -1.2);
> # сосредоточенная нагрузка. Порядок заполнения [точка приложения, значение силы] …
> F=c(14, 4, 6, 2);
> N_calc2(q,F,L)
[1] «Сосредоточенные силы Fi»
x F
[1,] 14 4
[2,] 6 2
[1] «Распределенные нагрузки»
Ln Lk q
[1,] 0 12 -1.2
[1] «Максимальное растягивающее значение N=4.000000 при x=12.000000»
[1] «Максимальное сжимающее значение N=-8.400000 при x=0.000000»
>

В результате на экране отобразится следующая эпюра:
Здесь сразу определены опасные сечения.
Так же, как и в предыдущем варианте, с помощью функции Nx_calc можно определить усилие N в любом сечении x.

Дополнительно

Пример из пособия МИИТ Эпюра продольных сил при центральном растяжении-сжатии (формат pdf).

Связанные статьи

  • Найти внутренние усилия и построить их эпюры для стержня
  • Закон Гука

метки: scilab,
внутренние усилия,
определение усилий: примеры,
растяжение-сжатие,
язык r

Источник

В машиностроении, строительстве и архитектуре при расчетах прочности и жесткости материалов используется математический аппарат технической механики. Деформация растяжения – одно из ключевых понятий, характеризующее механические процессы, происходящие в материалах при приложении к ним внешних воздействий. Для наглядности изучаются изменения, происходящие в брусе с постоянным сечением, характерные для упругой деформации при приложении внешних усилий.

Закон Гука (английский физик Р. Гук, 1653-1703) для упругой деформации растяжения/сжатия гласит, что нормальное напряжение находится в линейной зависимости (прямо пропорционально) к относительному удлинению/укорочению. Математический аппарат технической механики описывает эту формулу следующим образом:

Коэффициент пропорциональности E (модуль упругости, модуль Юнга) – величина определяющая жесткость материала, единица измерения – паскаль (ПА).

Его значения были установлены эмпирическим путем для большинства конструкционных материалов, необходимую информацию можно почерпнуть в справочниках по машиностроению. Относительная деформация является отношением изменения длины бруса к его изначальным размерам, это безразмерная величина, которая иногда отражается в процентном соотношении.

При растяжении или сжатии у бруса меняется не только длина, но происходят поперечные деформации: при сжатии образуется утолщение, при растяжении толщина сечения становится меньше. Величины этих изменений находятся в линейной зависимости друг от друга, причем установлено, что коэффициент пропорциональности Пуассона (фр. ученый С. Пуассон, 1781-1840) остается всегда неизменным для исследуемого материала.

Внутренние усилия при растяжении и сжатии

При приложении к брусу с постоянным сечением внешних воздействий, действие которых в любом поперечном разрезе направлено параллельно его центральной оси и перпендикулярно сечению, с ним происходит следующий вид деформации: растяжение или сжатие.  На основе гипотезы о принципе независимости внешнего воздействия для каждого из поперечных разрезов можно рассчитать внутреннее усилие как векторную сумму всех приложенных внешних воздействий. Растягивающие нагрузки в сопромате принято считать положительными, а сжимающие отрицательными.

Рассмотрев произвольный разрез бруса или стержня, можно сказать что внутренние напряжения равны векторной сумме всех внешних сил, сгруппированных по одной из его сторон. Это верно только с учетом принципа Сен-Венана (фр. инженер А. Сен-Венан, 1797-1886) о смягчении граничных условий, т.к. распределение внутренних усилий по поверхности разреза носит сложный характер с нелинейными зависимостями, но в данном случае значением погрешности можно пренебречь как несущественным.

Читайте также:  Растяжение связок на ноге симптомы и лечение народными средствами

Применяя гипотезу Бернулли (швейцарский математик, И. Бернулли, 1667-1748) о плоских сечениях, для более наглядного представления процессов распределения сил и напряжений по центральной оси бруса можно построить эпюры. Визуальное представление более информативно и в некоторых случаях позволяет получить необходимые величины без сложных расчетов. Графическое представление отражает наиболее нагруженные участки стержня, инженер может сразу определить проблемные места и ограничиться расчетами только для критических точек.

Все вышесказанное может быть применимо при квазистатической (система может быть описана статически) нагрузке стержня с постоянным диаметром. Потенциальная энергия системы на примере растяжения стержня определяется по формуле:

U=W=FΔl/2=N²l/(2EA)

Потенциальная энергия растяжения U концентрируется в образце и может быть приравнена к выполнению работы W (незначительное выделение тепловой энергии можно отнести к погрешности), которая была произведена силой F для увеличения длины стержня на значение абсолютного удлинения.  Преобразуя формулу, получаем, что вычислить значение величины потенциальной энергии растяжения можно, рассчитав отношение квадрата продольной силы N помноженной на длину стержня l и удвоенного произведения модуля Юнга E материала на величину сечения A.

Как видно из формулы, энергия растяжения всегда носит положительное значение, для нее невозможно применить гипотезу о независимости действия сил, т.к. это не векторная величина. Единица измерения – джоуль (Дж). В нижней части формулы стоит произведение EA – это так называемая жесткость сечения, при неизменном модуле Юнга она растет только за счет увеличения площади. Величина отношения жесткости к длине бруса рассматривается как жесткость бруса целиком.

Напряжения при растяжении сжатии

Используя гипотезу Бернулли для продольной упругой деформации стержня, можно определить продольную силу N как равнодействующую всех рассредоточенных по сечению внутренних усилий. Гипотеза Бернулли совместно с гипотезой о ненадавливании волокон позволяет сказать, что σ в произвольной точке разреза будут постоянны, т.к.  реакция продольных волокон одинакова на всем поперечном разрезе. Для определения величины нормального напряжения σ используется следующая формула:

Напряжение для упруго деформированного стержня описывается как отношение внутренней силы N к площади сечения A. Считается положительным при растяжении, при сжатии рассматривается как отрицательное.

Абсолютная деформация зависит от жесткости сечения, величины продольной силы и длины бруса. Зависимость можно описать по следующей формуле:

Δl=Nl/EA

Таким образом, методика расчета величины абсолютного изменения длины такова: необходимо просчитать отношение значения продольной силы N умноженной на длину стержня l и жесткости сечения (произведение модуля Юнга E на площадь сечения A).

В реальных расчетах на брус действует достаточно много разнонаправленных сил, для решения таких задач требуется построение эпюр, которые могут наглядно показать какие напряжения действуют на разных участках, чем обусловлена деформация при растяжении и сжатии.

В рамках такой квазистатической (условно статической) системы, как брус или стержень с переменным сечением или отверстием, потенциальная энергия растяжения может быть рассмотрена как сумма энергий однородных участков. При проведении расчетов важно правильно разделить стержень на участки и смоделировать все участвующие в процессе силы и напряжения. Для реальных расчетов построение эпюр – сложная задача, которая требует от инженера хорошего понимания действующих на деталь нагрузок. Например, вал со шкивами разного диаметра требует сначала определения критических точек и разбивки на соответствующие участки, затем построения графиков по ним.

Деформации при растяжении сжатии

При растяжении/сжатии бруса могут возникать 2 вида деформации. Первый – упругая, второй – пластическая. Для упругой деформации характерно восстановление первоначальных параметров после прекращения воздействия. В случае пластической стадии деформации материала он утрачивает и не восстанавливает форму и размеры. Величина воздействия для перехода одного вида в другой называется пределом текучести.

Для расчета перемещения при растяжении бруса или стержня следует использовать метод разделения на участки, в рамках которых осуществляется приложение внешних воздействий. В точках воздействия силы следует вычислить величину изменения длины, используя формулу: Δl=Nl/EA. Как видно она зависит от жесткости сечения, длины бруса или стержня и величины действующей продольной силы. Итоговым перемещением для бруса целиком будет сумма всех частичных перемещений, рассчитанных для точек приложения силы.

Читайте также:  Куда обращаться с растяжением

Поперечные деформации бруса (становится более толстым при сжатии и тонким при растяжении) также характеризуются абсолютной и относительной величиной деформации. Первая – разность между размером сечения после и до приложения внешних воздействий, вторая – отношение абсолютной деформации к его исходному размеру. Коэффициент Пуассона, отражающий линейную зависимость продольной и поперечной деформаций, определяет упругие качества материалов и считается неизменным для растяжения и сжатия. Продольные наиболее наглядно отражают процессы, происходящие в брусе или стержне при внешнем воздействии. Зная величину любой из них (продольной или поперечной) и используя коэффициент Пуассона, можно рассчитать значение неизвестной.

Для определения величины деформации пружины при растяжении можно применить закон Гука для пружин:

F=kx

В данном случае х – увеличение длины пружины, k – коэффициент жесткости (единица измерения Н/м), F – сила упругости, направленная в противоположную от смещения сторону. Величина абсолютной деформации будет равна отношению силы упругости к коэффициенту жесткости. Коэффициент жесткости определяет упругие свойства материала, используемого для изготовления, может быть использован для выбора материала изготовления в условиях решения конкретной задачи.

Расчеты на прочность и жесткость

Прочность характеризует способность конструкционного материала сопротивляться внешним воздействиям без разрушений и остаточных изменений. Жесткость находится в линейной зависимости от модуля Юнга и размера сечения. Чем больше площадь, модуль упругости не меняется, тем больше жесткость. В общем случае жесткость подразумевает способность деформироваться без значительных изменений. Коэффициент запаса прочности – безразмерная величина, равная отношению предельного напряжения к допустимому. Запас прочности характеризует штатный режим работы конструкции даже с учетом случайных и не предусмотренных нагрузок. Наименьшим запасом прочности обладают пластические (1.2-2.5) и хрупкие (2-5) материалы.

Применение в расчетах этих коэффициентов позволяет, например, рассчитать опасную толщину для стержня, при которой может возникнуть максимальное нормальное напряжение. Используя коэффициент прочности и возможное предельное напряжение возможно произвести расчет необходимого диаметра вала, который гарантированно обеспечит упругую деформацию и не приведет к пластической. Для инженеров-экономистов важны расчеты наименьших безопасных размеров деталей конструкции по заданным нагрузкам.

Большинство практических расчетов на прочность и жесткость производятся для получения минимальных значений геометрических размеров конструкционных элементов и деталей машин в условиях известных внешних воздействий и необходимого и достаточного запаса прочности. Может решаться обратная задача получения значений предельных нагрузок при условии сохранения геометрических размеров и для конкретного материала.

Сложные конструкции могут быть разделены на элементарные части, для которых будут производиться расчеты, затем полученные результаты интерпретируются в рамках всей системы, для этого удобно строить эпюры распределения внешних воздействий и внутренних напряжений статически определенной системы.

С помощью известной жесткости материала делают расчеты максимально возможной длины балки или стержня (вала) при условии неизменности его сечения. Для ступенчатых валов необходимо строить эпюры воздействия внешних сил и возникающих в точках их приложения внутренних напряжений в критических точках. От правильно построенной теоретической модели будет зависеть насколько эффективно и долго прослужит вал для станка, не разрушится ли он от динамических крутящих моментов. На этапе проектирования можно выявить потенциальные слабые точки и рассчитать необходимые параметры для заданного предела прочности.

С расчетами на прочность связаны такие понятия, как срез и смятие. Срез проявляется в виде разрушения детали соединения в условиях возникновения в ее поперечном сечении перпендикулярной к нему и достаточной силы.

При расчетах соединений используют пределы текучести используемых материалов и коэффициенты запаса прочности, вычисляют максимально возможные напряжения.

Исследования на прочность обычно подразумевают решение нескольких задач: в условиях проведения поверочного расчета на проверку прочности при известных усилиях и площади сечения оценивают фактический коэффициент запаса прочности; подбор оптимального диаметра при заданных нагрузках и допустимом напряжении; вычисляют грузоподъемность или несущую способность с помощью определения внутреннего усилия при известной площади сечения и напряжении.

Прочностные расчеты при разных видах воздействий в рамках условно статических систем сложны, требуют учета многих, иногда не очевидных, факторов, их практическая ценность заключается в вычислении допустимых размеров конструкционных материалов для заданных параметров запаса прочности.

Источник