Центральное растяжение расчет на прочность

Центральное растяжение расчет на прочность thumbnail
Сопромат

Эта статья будет посвящена расчетам на прочность, которые выполняются в сопромате и не только. Расчеты на прочность бывают двух видов: проверочные и проектировочные (проектные).

Проверочные расчеты на прочность – это такие расчеты, в ходе которых проверятся прочность элемента заданной формы и размеров, под некоторой нагрузкой.

В ходе проектировочных расчетов на прочность определяются какие-то размеры элемента из условия прочности. Причем, очевидно, что для разных видов деформаций эти условия прочности различны. Также к проектным расчетам можно отнести расчеты на грузоподъемность, когда вычисляется максимальная нагрузка, которую может выдерживать конструкция, не разрушаясь.  Рассмотрим более подробно, как проводится прочностные расчеты для разных случаев.

Расчеты на прочность при растяжении (сжатии)

Начнем, пожалуй, с самого простого вида деформации растяжения (сжатия). Напряжение при центральном растяжении (сжатии) можно получить, разделив продольную силу на площадь поперечного сечения, а условие прочности выглядит вот так:

uslovie-prochnosti-pri-rastyazhenii-szhatii

где сигма в квадратных скобках – это допустимое напряжение. Которое можно получить, разделив предельное напряжения на коэффициент запаса прочности:

dopustimoe-napryazhenie

Причем, за предельное напряжение для разных материалов принимают разное значение. Для пластичных материалов, например, для малоуглеродистой стали (Ст2, Ст3) принимают предел текучести, а для хрупких (бетон, чугун) берут в качестве предельного напряжения – предел прочности (временное сопротивление). Эти характеристики получают при испытании образцов на растяжение или сжатие на специальных машинах, которые фиксируют характеристики в виде диаграммы.

dlya-plastichnyih-i-dlya-hrupkih

Коэффициент запаса прочности выбирается конструктором исходя из своего личного опыта, назначения проектируемой детали и сферы применения. Обычно, он варьируется от 2 до 6.

В случае если необходимо подобрать размеры сечения, площадь выражают таким образом:

ploshhad

Таким образом, минимальная площадь поперечного сечения при центральном растяжении (сжатии) будет равна отношению продольно силы к допустимому напряжению.

Расчеты на прочность при кручении

При кручении расчеты на прочность в принципе схожи с теми, что проводятся при растяжении. Только здесь вместо нормальных напряжений появляются касательные напряжения.

На кручение работают, чаще всего, детали, которые называются валами. Их назначение заключается в передаче крутящего момента от одного элемента к другому. При этом вал по всей длине имеет круглое поперечное сечение. Условие прочности для круглого поперечного сечения можно записать  так:

uslovie-prochnosti-pri-kruchnii

где Ip — полярный момент сопротивления, ρ — радиус круга. Причем по этой формуле можно определить касательное напряжение в любой точке сечения, варьируя значение ρ. Касательные напряжения распределены неравномерно по сечению, их максимальное значение находится в наиболее удаленных точках сечения:

raspredelenie-kasatelnyih-napryazheniy

Условие прочности, можно записать несколько проще, используя такую геометрическую характеристику как момент сопротивления:

uslovie-prochnosti

То бишь максимальные касательные напряжения равны отношению крутящего момента к полярному моменту сопротивления и должны быть меньше либо равны допустимому напряжению. Геометрические характеристики для круга, упомянутые выше можно найти вот так:

geometricheskie-xarakteristiki

Иногда в задачах встречаются и прямоугольные сечения, для которых момент сопротивления определяется несколько сложнее, но об этом я расскажу в другой статье.

Расчеты на прочность при изгибе

Сопромат

Источник

Расчет на прочность при растяжении
Центральное растяжение расчет на прочность
Центральное растяжение расчет на прочность

2.4. РАСЧЕТЫ НА ПРОЧНОСТЬ ПРИ РАСТЯЖЕНИИ Основной задачей расчета конструкции на растяжение является обеспечение ее прочности в условиях эксплуатации. Условие прочности – оценка прочности элемента конструкции, сводящаяся к сравнению расчетных напряжений с допускаемыми: σ≤рσ[р ]; σ с ≤[ с],σ (2.9) где σр и σс – наибольшие расчетные растягивающие и сжимающие напряжения; [σр] и [σс] – допускаемые напряжения при растяжении и сжатии. Допускаемое напряжение – наибольшее напряжение, которое можно допустить в элементе конструкции при условии его безопасной, долговечной и надежной работы: Здесь σпред – предельное напряжение (состояние), при котором конструкция перестает удовлетворять эксплуатационным требованиям; им мо- гут быть предел текучести, предел прочности, предел выносливости, пре- дел ползучести и др. Для конструкций из пластичных материалов при определении допускаемых напряжений используют предел текучести σт (рис. 2.4, а). Это связано с тем, что в случае его превышения деформации резко возрастают при незначительном увеличении нагрузки и конструкция перестает удовлетворять условиям эксплуатации. Допускаемое напряжение в этом случае определяют как Для хрупких материалов (чугун, бетон, керамика) где σвр и σвс – пределы прочности при растяжении и сжатии (рис. 2.4, б). Здесь [n] – нормативный коэффициент запаса прочности. В зависимости от той предельной характеристики, с которой сравнивают расчетное напряжение σ, различают [nт] – нормативный коэффициент запаса прочности по отношению к пределу текучести σт и [nв] – нормативный коэффициент запаса прочности по отношению к пределу прочности σв. Запас прочности – отношение предельно допустимой теоретической нагрузки к той нагрузке, при которой возможна безопасная работа конструкции с учетом случайных перегрузок, непредвиденных дефектов и недостоверности исходных данных для теоретических расчетов. Нормативные коэффициенты запаса прочности зависят: − от класса конструкции (капитальная, временная), − намечаемого срока эксплуатации, − условий эксплуатации (радиация, коррозия, загнивание), − вида нагружения (статическое, циклическое, ударные нагрузки) − неточности задания величины внешних нагрузок, − неточности расчетных схем и приближенности методов расчета − и других факторов. Нормативный коэффициент запаса прочности не может быть единым на все случаи жизни. В каждой отрасли машиностроения сложились свои подходы, методы проектирования и приемы технологии. В изделиях общего машиностроения принимают [nт] = 1,3 – 2,2; [nв] = 3 – 5. Вероятность выхода из строя приближенно можно оценить с помощью коэффициента запаса в условии прочности: n = 1 соответствует вероятности невыхода из строя 50 %; n = 1,2 соответствует вероятности невыхода из строя 90 %; n = 1,5 соответствует вероятности невыхода из строя 99 %; n = 2 соответствует вероятности невыхода из строя 99,9 %. Для неответственных деталей n = 2 много. Для ответственных – мало. Так для каната подъемного лифта это означает на 1000 подъемов одно падение. При расчете конструкций на прочность встречаются три вида задач, которые вытекают из условия прочности а) поверочный расчет (проверка прочности). Известны усилие N и площадь A. Вычисляют σ = N/A и, сравнивая его с предельным σт или σв (для пластичного и хрупкого материалов соответственно), находят фактический коэффициент запаса прочности который затем сопоставляют с нормативным [n]; б) проектный расчет (подбор сечения). Известны внутреннее усилие N и допускаемое напряжение [σ]. Определяют требуемую площадь поперечного сечения стержня в) определение грузоподъемности (несущей способности). Известны площадь А и допускаемое напряжение [σ]. Вычисляют внутреннее усилие N≤N[ ] = ⋅[σ]A, (2.15) а затем в соответствие со схемой нагружения – величину внешней нагрузки F ≤ [F].

Источник

12 мая 2016 г.

Центрально-растянутые элементы. Работа таких элементов под нагрузкой полностью соответствует диаграмме работы матери­ала при растяжении.

Основная проверка для центрально-растянутых элементов — проверка прочности, относящаяся к первой группе предельных состояний.

Напряжения в центрально-растянутом элементе

σ=N / Aп ≤ Ryγc

где N— усилие в элементе от расчетных нагрузок; Aп — площадь поперечного сечения проверяемого элемента за вычетом ослабле­ний (площадь сечения нетто); Ry — расчетное сопротивление; γc — коэффициент условий работы.

Расчет по формуле выше предупреждает развитие пластических деформаций в ослабленном сечении элементов, выполненных из малоуглеродистых сталей и сталей повышенной прочности.

Расчет на прочность растянутых элементов конструкций из стали с отношением Ruγu > Ry эксплуатация которых возможна и после достижения металлом предела текучести, выполняют по формуле σ=N / Aп ≤ Ruγu / γuγn

где γu — коэффициент надежности при расчете по временному со­противлению.

Кроме прочности растянутых элементов, необходимо обеспечить их достаточную жесткость, чтобы избежать повреждения элементов при перевозке и монтаже конструкций, а также в процессе их эксплу­атации уменьшить провисание элементов от собственного веса и пре­дотвратить вибрацию стержней при динамических нагрузках.

Для этой цели проверяют гибкость растянутых элементов, ко­торая не должна превышать максимально допустимых значений [λ], приведенных в таблице ниже 

λ = lef/i ≤ λ 

где lef — расчетная длина элемента; i — радиус инерции сечения.

Предельные гибкости [λ] растянутых элементов

Элементы конструкций

Максимальная допускаемая гибкость

в зданиях и сооружениях при нагрузках

в затво­рах ГТС

статиче­

ских

динамиче­ских, прило­женных непо­средственно к конструкции

1

2

3

4

Пояса и опорные раскосы плоских

ферм

400

250

250

Прочие элементы ферм

400

350

350

Нижние пояса подкрановых балок

и ферм

150

Элементы продольных и попе­речных связей в затворах ГТС

150

Элементы вертикальных связей между колоннами (ниже подкра­новых балок)

300

300

Прочие элементы связей

400

400

400

Примечания. I. В сооружениях, не подвергающихся динамическим воздействиям. гибкость растянутых элементов проверяют только в вертикальной плоскости. 2. К динамическим нагрузкам, приложенным непосредственно к конструкциям, относятся нагрузки, принимаемые в расчетах на выносливость или в расчетах с учетом коэффициентов динамичности. 3. Для растянутых элементов, в которых при неблагоприятном расположении нагрузки может изменяться знак усилия, предельную гибкость принимают как для сжатых элементов; при этом соединительные прокладки в составных элементах следует устанавливать не реже чем через 40i

Центрально-сжатые элементы. Эти элементы рассчитывают по первой группе предельных состояний, при этом для коротких элементов, длина которых превышает наименьший поперечный раз­мер не более чем в 5-6 раз, проверяют прочность по формуле выше, а для длинных гибких элементов — устойчивость по формуле

σ = N/φA = Ryγc/γn

где А — площадь поперечного сечения брутто; φ — коэффициент про­дольного изгиба, определяемый по таблице ниже по наибольшей гибкости λ или по формулам в зависимости от условной гибкости элемента; при 0 < λ ≤ 2,5:

Коэффициенты φ продольного изгиба центрально-сжатых стальных элементов

Гибкость элемента

Значения φ при Ry, МПа

200

240

280

320

360

400

10

0,988

0,987

0,985

0,984

0,983

0,982

20

0,967

0,962

0,959

0,955

0,952

0,949

30

0,939

0,931

0,924

0,917

0,911

0,905

40

0.906

0,894

0,883

0,873

0,863

0,854

50

0,869

0,852

0,836

0,822

0,809

0,796

60

0,827

0,805

0,785

0,766

0,749

0,721

70

0,782

0,754

0,724

0,687

0,654

0,623

80

0,734

0,686

0,641

0,602

0,566

0,532

90

0,665

0,612

0,565

0,522

0,483

0,447

100

0,599

0,542

0,493

0,448

0,408

0,369

110

0,537

0,478

0,427

0,381

0,338

0,306

120

0,479

0,419

0,366

0,321

0,287

0,260

130

0,425

0,364

0,313

0,276

0,247

0,223

140

0,376

0,315

0,272

0,240

0,215

0,195

150

0,328

0,276

0,239

0,211

0,189

0,171

160

0,290

0,244

0,212

0,187

0,167

0,152

170

0,259

0,218

0,189

0,167

0,150

0,136

180

0,233

0,196

0,170

0,150

0,135

0,123

190

0,210

0,177

0,154

0,136

0,122

0,111

200

0,191

0,161

0,140

0,124

0,111

0,101

210

0,174

0,147

0,128

0,113

0,102

0,093

220

0,160

0,135

0,118

0,104

0,094

0,086

Коэффициенты μ для определения расчетных длин колонн и стоек постоянного сечения

 Расчетная схема элемента

 μ

Расчетная схема элемента 

 μ

 1 - 0051

1

2

0,7 

1 - 0051 - копия 

0,5

1,12

0,725

Учитывая традиционное соотношение размеров элементов в металлических конструкциях, основной является проверка устойчивости.

По формуле, выведенной Эйлером, потеря устойчивости цент­рально-сжатым элементом, шарнирно закрепленным по концам (основной случай), происходит при критической силе

Ncr = π2EImin / l2ef

где Е — модуль упругости; Imin — минимальный момент инерции поперечного сечения элемента; lef — расчетная длина стержня.

Соответственно критические напряжения

1 - 0052

где imin= √Imin/A — минимальный радиус инерции.

Формула Эйлера выведена в предположении, что Е — величина постоянная, т. е. критические напряжения не превосходят предел пропорциональности материала. Для малоуглеродистых сталей, име­ющих предел пропорциональности σel = 200 МПа, из формулы ниже можно получить наименьшую гибкость, при которой применима формула Эйлера:

1 - 0052 - копия

Гибкость стержней не должна превышать предельных значений для сжатых элементов (таблица ниже).

Значения предельной допустимой гибкости [λ] для сжатых стержней

позиции

Элементы конструкций

λ

1

2

3

1

Пояса, опорные раскосы и стойки, передающие опорные реакции:

а) плоских ферм и пространственных конструк­ций из труб или парных уголков высотой до 50 м;

б) пространственных конструкций из одиноч­ных уголков труб или парных уголков высотой более 50 м

180-60α

120

2

а) плоских ферм, сварных пространственных конструкций из одиночных уголков, простран­ственных конструкций из труб или парных уголков;

б) пространственных конструкций из одиночных уголков с болтовыми соединениями

210-60α

220-40α

3

Верхние пояса ферм, остающиеся незакреплен­ными в процессе монтажа

220

4

Основные колонны

180-60α

5

Второстепенные колонны (стойки фахверка, фонарей и т. п.), элементы решетки колонн, эле­менты вертикальных связей между колоннами (ниже подкрановых балок)

210-60α

6

Элементы связей (за исключением связей, ука­занных в п. 5), а также стержни, служащие для уменьшения расчетной длины сжатых стерж­ней, и другие ненагруженные элементы

200

7

Сжатые и ненагруженные элементы простран­ственных конструкций таврового и крестового сечения, подверженные воздействию ветровых нагрузок, при проверке гибкости в вертикаль­ной плоскости; элементы связей в затворах ГТС

150

Примечание. α = N / φARyγc ≥ 0,5; в необходимых случаях вместо φ следует применять φе.

Проверка устойчивости центрально-сжатого элемента сводит­ся к сравнению напряжений, равномерно распределенных по сече­нию, с критическим вычисленным с учетом случайных эксцентри­ситетов: σ=N/A ≤ σсr. Чтобы не вычислять каждый раз σсr для про­верки устойчивости можно пользоваться формулой выше. Смысл коэффициента продольного изгиба φ состоит в том, что он умень­шает расчетное сопротивление до значений, обеспечивающих ус­тойчивое равновесие стержня, т. е. до критического напряжения:

σсr = φ Ry или φ = σсrRy

С учетом влияния случайных эксцентриситетов

1 - 0053

где σсr — критическое напряжение стержня, вычисленное по форму­ле Эйлера; σeсr — критическое напряжение стержня, сжимаемого силой, приложенной с возможным случайным эксцентриситетом е.

Источник

Растяжение  (сжатие) – это такой   вид нагружения стержня, при котором в его поперечном сечении возникает внутренняя продольная сила Ν, действующая вдоль центральной оси z.

Продольная сила Ν – это равнодействующая всех внутренних нормальных сил в сечении. Для вычисления продольной силы применяется метод сечений.

2014-09-07 19-04-45 Скриншот экрана

Продольная сила Ν численно равна алгебраической сумме проекций всех сил, действующих по одну сторону от рассматриваемого сечения,  на продольную ось бруса.

Правило знаков для продольной силы Ν: при растяжении продольная сила положительна, при сжатии – отрицательна.

2014-09-07 19-09-39 Скриншот экрана

График изменения продольных сил по длине стержня называется эпюрой. Эпюра N строится методом сечений на характерных участках бруса. Строится эпюра для использования ее при расчете бруса на прочность. Она дает возможность найти наибольшие значения продольных сил и положение сечений, в которых они возникают.

При растяжении (сжатии) возникают только нормальные напряжения. Согласно гипотезе Я. Бернулли (или гипотеза плоских сечений) в поперечных сечениях, удаленных от места приложения нагрузок, нормальные напряжения распределяются по сечению практически равномерно, а сами сечения, перпендикулярные к оси стержня z, остаются плоскими в процессе нагружения.

Нормальные напряжения в сечении при  растяжении (сжатии) вычисляются по формуле

2014-09-01 21-40-08 Скриншот экрана

где Аплощадь поперечного сечения.

Правило знаков для σ совпадает с правилом знаков для N.

В наклонном сечении, нормаль к которому составляет угол α с осью стержня z,

2014-09-01 21-43-41 Скриншот экрана

При растяжении в продольном направлении стержень удлиняется, а его поперечные размеры уменьшаются, при сжатии, напротив, в продольном направлении стержень укорачивается, а его поперечные размеры увеличиваются; Δℓ — абсолютное удлинение или укорочение участка стержня длиной ℓ, Δbабсолютная поперечная деформация.

Относительное удлинение или укорочение участка стержня длиной ℓ, называемое линейной деформацией, определяется следующим образом

ε=Δℓ/ℓ.

Экспериментально установлено, что в определенной области нагрузок при упругом поведении материала между нормальными напряжениями и линейными деформациями существует линейная зависимость (закон Гука для напряжений)

σ=εЕ,

где Е – модуль продольной упругости или модуль Юнга, это физическая const. Для каждого из материалов величина модуля упругости имеет свое значение:

сталь, Е = 2.105 МПа,

медь, Е = 1.105 МПа,

алюминий, Е = 0,7.105 МПа.

Значение модуля упругости устанавливается экспериментально.

Согласно закону Гука (данную запись называют законом Гука для деформаций)

Δℓ=Νℓ/ЕА

Произведение ЕА – называется жесткостью стержня при растяжении – сжатии.

Перемещение произвольного сечения ступенчатого стержня

w=∑Δℓi

Относительная поперечная деформация:

ε′=Δb/b

где b – поперечный размер стержня.

Эксперименты также показывают, что в упругой стадии деформирования между продольной и поперечной деформациями существует взаимосвязь

μ  =│ε′⁄ε│ — const,

где   μ —  коэффициент Пуассона, берется по модулю ,поскольку у продольной и поперечной деформации разные знаки (при растяжении продольные волокна увеличиваются, а поперечные уменьшаются в размере).

Для твердых материалов имеет значения коэффициент Пуассона

0≤μ ≤0,5

Изменение температуры стержня вызывает его удлинение (при нагревании) или укорочение (при охлаждении)

2014-09-01 22-02-54 Скриншот экрана

где — a- коэффициент линейного температурного расширения; Δtº=(tºк-tºн) — изменение температуры между значениями начальным (tºн) и конечным (tºк).

Статически неопределимыми называют системы, имеющие лишние связи – внешние или внутренние.

Для определения внутренних усилий в таких системах недостаточно рассматривать только уравнения равновесия.

В этом случае требуются дополнительные уравнения, число которых равно количеству лишних связей. Дополнительные уравнения составляются на основе анализа картины деформирования системы и использования законов деформирования ее элементов.

Алгоритм решения подобных задач включает следующее:

1)   Статическая часть. Составляются уравнения равновесия с включением неизвестных усилий, действующих по направлению лишних связей.

2)    Геометрическая часть. Составляются уравнения, описывающие взаимосвязь перемещений характерных точек, удлинений и укорочений отдельных стержней между собой.

3)   Физическая связь. Записываются законы деформирования отдельных стержней системы.

Порядок расчета статически неопределимых брусьев

  1.  Задаться направлениями возможных опорных реакций и составить уравнение      статики для всей системы в целом.
  2. Определить степень статической неопределимости и использовать метод сечений с целью выразить неизвестные усилия через неизвестные опорные реакции. При этом неизвестные продольные силы (N) следует предполагать положительными и поэтому направлять «от сечения».
  3. Сформулировать условие совместности деформаций участков бруса.
  4. В процессе превращения условия совместности в уравнение совместности деформаций различий в характере деформаций участков не учитывать.

Порядок расчета статически неопределимых шарнирно-стержневых систем

  1. Задаться направлениями опорных реакций, но уравнений равновесия для всей системы не составлять, а сразу использовать метод сечений и составить уравнения статики для выделенной части системы.
  2. Определить степень статической неопределимости как разницу между количеством всех неизвестных, оказавшихся в уравнениях статики, и числом самих этих уравнений.
  3. Рассмотреть (изобразить) любую возможную картину деформаций системы и из ее анализа сформулировать условия совместности деформаций стержней системы (столько, какова степень статической неопределимости).
  4. В процессе преобразования условий совместности в уравнения совместности деформаций обязательно учитывать различие в характере деформаций стержней (т.е. вводить удлинение со знаком «плюс», а укорочение со знаком «минус») в соответствии с той картиной деформации, которую мы рассматриваем.

Источник